
A Note on Probability Aggregation and Conditional Accuracy Measures
Brian Weatherson - April 25, 2011

Assume that we care about a set of n propositions, {p1, ..., pn}. Let w be a world, and for any world w and proposi-
tion p, define T (p, w) as p is p is true in w, and ¬p if p is false in w. And say V (p, w) is 1 if p is true in w, and 0
otherwise. Define the conditional inaccuracy of a probability function Pr in world w as follows:

A(Pr, w) =
n
∑

i=1

(V (pi , w)−Pr(pi |T (p1, w)∧ · · · ∧T (pi−1, w)∧T (pi+1, w) . . .T (pn , w)))2

We will say A(Pr) in a world w is A(Pr, w).
This is basically a Brier score measure for conditional probabilities. For any world, and any proposition, we look

at the difference between the truth value of that proposition and the conditional probability of that proposition.
The condition for the conditional probability is the long conjunction that sets the truth value of each of the other
propositions to their truth value in that world.

Apart from using conditional probabilities, I’ve made this different from a regular Brier score in a couple of
ways. First, I’ve just focussed on the ‘positive’ propositions, p1, ..., pn , not the ‘negative’ ones, ¬p1, ...,¬pn . But
adding them in would just double the value of A, since (V (p, w)−Pr(p, w))2 = ((1−V (p, w))−Pr(¬p, w))2. And
I haven’t used a sum here not an average; i.e., I haven’t divided the whole thing by n. But since we’re only going to
care about comparative accuracy over a fixed set of propositions, that won’t matter a lot.

Let’s consider a very simple case for now, just because the algebra is easy. We’ll consider just the case where
n = 2. And instead of calling them p1 and p2, we’ll call the propositions p and q . Imagine that we have two
probability functions Pr1 and Pr2. And according to both Pr1 and Pr2, p and q are probabilistically independent.
We’ll write xi and yi for Pri (p) and Pri (q) respectively, for i ∈ {1,2}.

Now assume that we want to ‘blend’ those two functions into a single function Pr. For any given function Pr
we can work out its expected conditional inaccuracy according to both Pr1 and Pr2. Our aim is to minimize the
average of these two expected inaccuracies.

If we were measuring inaccuracy by looking at just the probabilities of p and q , and not their conditional
probabilities, it is fairly easy to show that we would do this by letting Pr be a simple average of Pr1 and Pr2. But I
would have guessed this isn’t true when we are measuring conditional inaccuracy, because we might to better by, say,
taking the averages of the conditional probabilities, and working out the unconditional probabilities from those.
The point of this note is to investigate these claims.

To simplify matters, let’s introduce some shorthand. We’ll say z1 = Pr(p|q), z2 = Pr(p|¬q), z3 = Pr(q |p) and
z4 = Pr(q |¬p). And we’ll identify the four salient worlds, (really world classes) as follows: w1 = p ∧ q , w2 =
p ∧¬q , w3 = ¬p ∧ q and w4 = ¬p ∧¬q . Now we can work out some values for A(Pr, w).

A(Pr, w1) = (Pr(p|q)− 1)2+(Pr(q |p)− 1)2

= (z1− 1)2+(z3− 1)2

A(Pr, w2) = (Pr(p|¬q)− 1)2+Pr(q |p)2

= (z2− 1)2+ z2
3

A(Pr, w3) = Pr(p|q)2+(Pr(q |¬p)− 1)2

= z2
1 +(z4− 1)2

A(Pr, w4) = Pr(p|¬q)2+Pr(q |¬p)2

= z2
2 + z2

4

For any random variable X , we’ll say Ei (X ) is the expected value of X according to Pri for i ∈ {1,2}, and E3(X ) =
E1(X )+E2(X )/2. Then E1(A(Pr)) is
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4
∑

i=1

Pr i (wi )A(Pr, wi )

=x1y1((z1− 1)2+(z3− 1)2)+ x1(1− y1)((z2− 1)2+ z2
3 )+ (1− x1)y1(z

2
1 +(z4− 1)2)+ (1− x1)(1− y1)(z

2
2 + z2

4 )

=z1(x1y1z1− 2x1y1+(1− x1)y1z1)+
z2(x1(1− y1)z2− 2x1(1− y1)+ (1− x1)(1− y1)z2)+
z3(x1y1z3− 2x1y1+ x1(1− y1)z3)+
z4((1− x1)y1z4− 2(1− x1)y1+(1− x1)(1− y1)z4)+
2x1y1+ x1(1− y1)+ (1− x1)y1

=z1(y1z1− 2x1y1)+ z2((1− y1)z2− 2x1(1− y1))+ z3(x1z3− 2x1y1)+ z4((1− x1)z4− 2(1− x1)y1)+ x1+ y1

A similar calculation gives us this value for E2(A(Pr)):

z1(y2z1− 2x2y2)+ z2((1− y2)z2− 2x2(1− y2))+ z3(x2z3− 2x2y2)+ z4((1− x2)z4− 2(1− x2)y2)+ x2+ y2

Now we want to minimize the average of these two sums, subject to the constraint that each z1 must in in [0,1].
(Note: I think that’s enough to ensure Pr is a probability function, but I need to double check this.) Since no terms
in the summation include more than one zi , we can approach the four minimsation tasks indepdently. Rather than
try to minimise E3(A(Pr)), which is what we’re officially trying to do, we’ll minimise 2E3(A(Pr)); this just saves
having to deal with too many fractions!

Let’s start with z1. The relevant term in the sum we’re trying to minimise is:

z1(y1z1− 2x1y1)+ z1(y2z1− 2x2y2)

If we differentiate with respect to z1, the resulting derivative is:

2y1z1− 2x1y1+ 2y2z1− 2x2y2 = z1(2y1+ 2y2)− 2x1y1− 2x2y2

And that is 0 when
z1 =

x1y1+ x2y2

y1+ y2

And note that the second derivative is just 2y1+ 2y2, which is non-negative, so we’ve got a genuine minimum here,
not merely a turning point.

Now we’ll do z2. The relevant term we’re trying to minimise is:

z2((1− y1)z2− 2x1(1− y1))+ z2((1− y2)z2− 2x2(1− y2))

If we differentiate with respect to z2, the resulting derivative is:

2(1− y1)z2− 2x1(1− y1)+ 2(1− y2)z2− 2x2(1− y2) = z2(2(1− y1)+ 2(1− y2))− 2x1(1− y1)− 2x2(1− y2)

And that is 0 when

z2 =
x1(1− y1)+ x2(1− y2)

(1− y1)+ (1− y2)
And note that the second derivative is just 2(1− y1) + 2(1− y2), which is non-negative, so we’ve got a genuine
minimum here, not merely a turning point.

I won’t go through the other two cases in detail, but similar arguments show that the inaccuracy is minimised
when z3 and z4 are:

z3 =
x1y1+ x2y2

x1+ x2

z4 =
(1− x1)y1+(1− x2)y2

(1− x1)+ (1− x2)
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And the only way to have z1 to z4 to take those values is for Pr to be the linear average of Pr1 and Pr2. That is,
Pr(p ∧ q) = (Pr1(p ∧ q) + Pr2(p ∧ q))/2, and so on for the other Boolean combinations of p and q . That this is
sufficient to get z1 to z4 to work out that way is a simple algebra exercise. That this is necessary follows from the
fact that once you set the values of the four conditional probabilities, the whole probability function is determined.
For instance, the following equation must hold:

Pr(p) =
z2+ z1z4− z2z4

1− z1z3+ z1z4+ z2z3− z2z4

Working out the rest of Pr given z1 through z4 is left as an exercise, but it isn’t especially challenging.
So we’ve proven the following result:

Let Pr1 and Pr2 be probability functions such that p and q are probabilistically independent according
to each. Say the inaccuracy of a probability function is measured by the conditional Brier score measure
described on page 1. Then the probability function Pr that minimises the average expected inaccuracy
according to Pr1 and Pr2 is the linear average of Pr1 and Pr2.

This is not what I would have expected. We are looking for some way to ‘mix’ various conditional probabilities.
Normally, mixing fractions by averaging their numerators and denominators does not produce particularly sensible
or interesting outcomes. But that seems to be what has happened here.

There are three big questions for further research that I haven’t started to explore.

• Does the result hold up if we have more than two probability functions?
• Does the result hold up if we have more than two propositions?
• Does the result hold up if we replace the Brier score approach with some other (credence-eliciting) accuracy

measure?

I don’t know the answers to these questions, but even the simple result proved here seemed surprising enough to
post.
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