
Margins and Errors
Brian Weatherson

Recently, Timothy Williamson (2013) has argued that considerations about margins
of errors can generate a new class of cases where agents have justified true beliefs
without knowledge. I think this is a great argument, and it has a number of inter-
esting philosophical conclusions. In this note I’m going to go over the assumptions
of Williamson’s argument. I’m going to argue that the assumptions which generate
the justification without knowledge are true. I’m then going to go over some of the
recent arguments in epistemology that are refuted by Williamson’s work. And I’m
going to end with an admittedly inconclusive discussion of what we can know when
using an imperfect measuring device.

1 Measurement, Justification and Knowledge
Williamson’s core example involves detecting the angle of a pointer on a wheel by
eyesight. For various reasons, I find it easier to think about a slightly different exam-
ple: measuring a quantity using a digital measurement device. This change has some
costs relative to Williamson’s version – for one thing, if we are measuring a quan-
tity it might seem that the margin of error is related to the quantity measured. If I
eyeball how many stories tall a building is, my margin of error is 0 if the building is
1-2 stories tall, and over 10 if the building is as tall as the World Trade Center. But
this problem is not as pressing for digital devices, which are often very unreliable for
small quantities. And, at least relative to my preferences, the familiarity of quantities
makes up for the loss of symmetry properties involved in angular measurement.

To make things explicit, I’ll imagine the agent S is using a digital scale. The scale
has a margin of error m. That means that if the reading, i.e., the apparent mass is
a, then the agent is justified in believing that the mass is in [a – m, a + m]. We will
assume that a and m are luminous; i.e., the agent knows their values, and knows she
knows them, and so on. This is a relatively harmless idealisation for a; it is pretty
clear what a digital scale reads.1 It is a somewhat less plausible assumption for m.
But we’ll assume that S has been very diligent about calibrating her scale, and that
the calibration has been recently and skillfully carried out, so in practice m can be
assessed very accurately.

We’ll make three further assumptions about m that strike me as plausible, but
which may I guess be challenged. I need to be a bit careful with terminology to set
out the first one. I’ll use V and v as variables that both pick out the true value of
the mass. The difference is that v picks it out rigidly, while V picks out the value of

† Unpublished. These are some reflections on a paper Timothy Williamson gave at the 2012
CSMN/Arché epistemology conference. Thanks to Derek Ball, Herman Cappelen, Ishani Maitra, Sarah
Moss and Robert Weatherson for helpful discussions, as well as audiences at Arché and Edinburgh.

1This isn’t always true. If a scale flickers between reading 832g and 833g, it takes a bit of skill to
determine what the reading is. But we’ll assume it is clear in this case. On an analogue scale, the luminosity
assumption is rather implausible, since it is possible to eyeball with less than perfect accuracy how far
between one marker and the next the pointer is.
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the mass in any world under consideration. Think of V as shorthand for the mass of
the object and v as shorthand for the actual mass of the object. (More carefully, V is a
random variable, while v is a standard, rigid, variable.) Our first assumption then is
that m is also related to what the agent can know. In particular, we’ll assume that
if the reading a equals v, then the agent can know that V ∈ [a – m, a + m], and
can’t know anything stronger than that. That is, the margin of error for justification
equals, in the best case, the margin of error for knowledge. The second is that the
scale has a readout that is finer than m. This is usually the case; the last digit on a
digital scale is often not significant. The final assumption is that it is metaphysically
possible that the scale has an error on an occasion that is greater than m. This is a
kind of fallibilism assumption – saying that the margin of error is m does not mean
there is anything incoherent about talking about cases where the error on an occasion
is greater than m.

This error term will do a lot of work in what follows, so I’ll use e to be the error
of the measurement, i.e., |a – v|. For ease of exposition, I’ll assume that a ≥ v, i.e.,
that any error is on the high side. But this is entirely dispensible, and just lets me
drop some disjunctions later on.

Now we are in a position to state Williamson’s argument. Assume that on a
particular occasion, 0 < e < m. Perhaps v = 830, m = 10 and a = 832, so e = 2.
Williamson appears to make the following two assumptions.2

1. The agent is justified in believing what they would know if appearances matched
reality, i.e., if V equalled a.

2. The agent cannot come to know something about V on the basis of a subop-
timal measurement that they could not also know on the basis of an optimal
measurement.

I’m assuming here that the optimal measurement displays the correct mass. I don’t
assume the actual measurement is wrong. That would require saying something im-
plausible about the semantic content of the display. It’s not obvious that the display
has a content that could be true or false, and if it does have such a content it might
be true. (For instance, the content might be that the object on the scale has a mass
near to a, or that with a high probability it has a mass near to a, and both of those
things are true.) But the optimal measurement would be to have a = v, and in this
sense the measurement is suboptimal.

The argument then is pretty quick. From the first assumption, we get that the
agent is justified in believing that V ∈ [a – m, a + m]. Assume then that the agent
forms this justified belief. This belief is incompatible with V ∈ [v–m, a–m). But if a
equalled v, then the agent wouldn’t be in a position to rule out that V ∈ [v–m, a–m).
So by premise 2 she can’t knowledgeably rule it out on the basis of a mismeasurement.
So her belief that V ≥ a – m cannot be knowledge. So this justified true belief is not
knowledge.

2I’m not actually sure whether Williamson makes the first, or thinks it is the kind of thing anyone who
thinks justification is prior to knowledge should make.
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If you prefer doing this with numbers, here’s the way the example works using
the numbers above. The mass of the object is 830. So if the reading was correct, the
agent would know just that the mass is between 820 and 840. The reading is 832.
So she’s justified in believing, and we’ll assume she does believe, that the mass is
between 822 and 842. That belief is incompatible with the mass being 821. But by
premise 2 she can’t know the mass is greater than 821. So the belief doesn’t amount
to knowledge, despite being justified and, crucially, true. After all, 830 is between
822 and 842, so her belief that the mass is in this range is true. So simple reflections
on the workings on measuring devices let us generate cases of justified true beliefs
that are not knowledge.

I’ll end this section with a couple of objections and replies.

Objection: The argument that the agent can’t know that V ∈ [a – m, a + m] is also an
argument that the argument can’t justifiably believe that V ∈ [a–m, a+m]. After all,
why should it be possible to get justification from a suboptimal measurement when
it isn’t possible to get the same justification from an optimal measurement?
Reply: It is possible to have justification to believe an outright falsehood. It is widely
believed that you can have justification even when none of your evidential sources are
even approximately accurate (Cohen, 1984). And even most reliabilists will say that
you can have false justified beliefs if you use a belief forming method that is normally
reliable, but which badly misfires on this occasion. In such cases we clearly get
justification to believe something from a mismeasurement that we wouldn’t get from
a correct measurement. So the objection is based on a mistaken view of justification.

Objection: Premise 2 fails in cases using random sampling. Here’s an illustration.
An experimenter wants to know what percentage of Fs are G. She designs a survey
to ask people whether they are G. The survey is well designed; everyone gives the
correct answer about themselves. And she designs a process for randomly sampling
the Fs to get a good random selection of 500. It’s an excellent process; every F
had an equal chance of being selected, and the sample fairly represents the different
demographically significant subgroups of the Fs. But by the normal processes of
random variation, her group contains slightly more Gs than the average. In her
survey, 28% of people said (truly!) that they were G, while only 26% of Fs are Gs.
Assuming a margin of error in such a study of 4%, it seems plausible to say she
knows that between 25 and 32% of Fs are Gs. But that’s not something she could
have known the survey had come back correctly reporting that 26% of Fs are Gs.
Reply: I think the core problem with this argument comes in the last sentence. A
random survey isn’t, in the first instance, a measurement of a population. It’s a mea-
surement of those surveyed, from which we draw extrapolations about the popula-
tion. In that sense, the only measurement in the imagined example was as good as it
could be; 28% of surveyed people are in fact G. So the survey was correct, and it is
fine to conclude that we can in fact know that between 24 and 32 percent of Fs are
Gs.



Margins and Errors 4

There are independent reasons for thinking this is the right way to talk about
the case. If a genuine measuring device, like a scale, is off by a small amount, we
regard that as a reason for tinkering with the device, and trying to make it more
accurate. That’s one respect in which the measurement is suboptimal, even if it is
correct within the margin of error. This reason to tinker with the scale is a reason
that often will be outweighed. Perhaps it is technologically infeasible to make the
machine more accurate. More commonly, the only way to guarantee greater accuracy
would be more cost and hassle than it is worth. But it remains a reason. The fact that
this experiment came out with a deviation between the sample and the population
is not a reason to think that it could have been run in a better way, or that there is
some reason to improve the survey. That’s just how random sampling goes. If it were
a genuine measurement of the population, the deviation between the ‘measurement’
and what is being measured would be a reason to do things differently. There isn’t
any such reason, so the sample is not truly a measurement.

So I don’t think this objection works, and I think the general principle that you
can’t get extra knowledge from a suboptimal measurement is right. But note also
that we don’t need this general principle to suggest that there will be cases of justified
true belief without knowledge in the cases of measurement. Consider a special case
where e is just less than m. For concreteness, say a = v + 0.95m, so e = 0.95m. Now
assume that whatever is justifiedly truly believed in this case is known, so S knows
that V ∈ [a – m, a + m]. That is, S knows that V ∈ [v – 0.05m, a + m].

We don’t need any principles about measurement to show this is false; safety
considerations will suffice. Williamson (2000) says that a belief that p is safe only
if p is true in all nearby worlds. But given how close v is to the edge of the range
[v – 0.05m, a + m]. Rival conceptions of safety don’t help much more than this. The
most prominent of these, suggested by Sainsbury (1995), says that a belief is safe only
if the method that produced it doesn’t produce a false belief in any nearby world. But
if the scale was off by 0.95m, it could have been off by 1.05m, so that condition fails
too.

I don’t want the last two paragraphs to leave too concessive an impression. I think
the objection fails because it relies on a misconception of the notion of measurement.
But I think that even if the objection works, we can get a safety based argument that
some measurement cases will produce justified true beliefs without knowledge. And
that will matter for the argument of the next two sections.

2 The Class of Gettier Cases is Disjunctive
There’s an unfortunate terminological confusion surrounding gaps between knowl-
edge and justification. Some philosophers use the phrase ‘Gettier case’ to describe
any case of a justified true belief that isn’t knowledge. Others use it to describe just
cases that look like the cases in Gettier (1963), i.e., cases of true belief derived from
justified false belief. I don’t particularly have strong views on whether either of these
uses is better, but I do think it is important to keep them apart.

I’ll illustrate the importance of this by discussing a recent argument due to Jeremy
Fantl and Matthew McGrath (Fantl and McGrath, 2009, Ch. 4). I’ve previously
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discussed this argument (Weatherson, 2011), but I don’t think I quite got to the
heart of why I don’t like the kind of reasoning they are using.

The argument concerns an agent, call her T, who has the following unfortunate
combination of features. She is very confident that p. And with good reason; her
evidence strongly supports p. For normal reasoning, she takes p for granted. That is,
she doesn’t distinguish betweenφ is best given p, and thatφ is simply best. And that’s
right too, given the strong evidence that p. But she’s not crazy. Were she to think
that she was facing a bet on extreme odds concerning p, she would cease taking p for
granted, and revert to trying to maximise expected value given the high probability
that p. But she doesn’t think any such bet is salient, so her disposition to retreat
from p to Probably p has not been triggered. So far, all is going well. I’m inclined to
say that this is enough to say that T justifiedly believes that p. She believes that p
in virtue of the fact that she takes p for granted in actual reasoning.3 She’s disposed
to stop doing so in some circumstances, but until that disposition is triggered, she
has the belief. And this is the right way to act given her evidence, so her belief is
justified. So far, so good.

Unfortunately, T really does face a bet on long odds about p. She knows she has
to choose between φ and ψ. And she knows that φ will produce the better outcome
iff p. But she thinks the amount she’ll gain by choosing ψ if ¬p is roughly the same
as the amount she’ll gain by choosing φ if p. That’s wrong, and her evidence clearly
shows it is wrong. If p is false, thenφwill be much worse thanψ. In fact, the potential
loss here is so great that ψ has the greater expected value given the correct evidential
probability of p. I think that means she doesn’t know that p. Someone who knows
that p can ignore ¬p possibilities in practical reasoning. And someone who could
ignore ¬p possibilities in practical reasoning would choose φ over ψ, since it is better
if p. But T isn’t in a position to make that choice, so she doesn’t know that p.

(I’ve said here that T is wrong about the costs of choosingφ if p, and her evidence
shows she is wrong. In fact I think she doesn’t know p if either of those conditions
obtain. But here I only want to use the weaker claim that she doesn’t know p if both
conditions obtain.)

Fantl and McGrath agree about the knowledge claim, but disagree about the
justified belief claim. They argue as follows (this is my version of the ‘Subtraction
Argument’ from page 97 of their book).

1. T is justfied in choosing φ iff she knows that p.
2. Whether T’s belief that p is true is irrelevant to whether she is justified in

choosing φ.
3. Whether T’s belief that p is ‘Gettiered’ is irrelevant to whether she is justified

in choosing φ.
4. Knowledge is true, justified, UnGettiered belief.
3There are some circumlocutions here because I’m being careful to be sensitive to the points raised

in Ross and Schroeder (2014) about the relationship between belief and reasoning. I think there’s less
distance between the view they put forward and the view I defended in Weatherson (2005) than they do,
but this is a subtle matter, and for this paper’s purposes I want to go along with Ross and Schroeder’s
picture of belief.
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5. So T is justfied in choosing φ iff she is justified in believing that p.
6. T is not justified in choosing φ.
7. So T is not justified in believing that p.

I think this argument is only plausible if we equivocate on what it is for a belief to
be ‘Gettiered’.

Assume first that ‘Gettiered’ means ‘derived from a false intermediate step’. Then
premise 4 is false, as Williamson’s example shows. S has a justified true belief that is
neither knowledge nor derived from a false premise.

Assume then that ‘Gettiered’ simply means that the true belief is justified without
being known. In that case we have no reason to accept premise 3. After all, the class
of true justified beliefs that are not knowledge is pretty open ended. Before reading
Williamson, we may not have thought that this class included the beliefs of agents
using measuring devices that were functioning properly but imperfectly. But it does.
Prior to the end of epistemology, we simply don’t know what other kind of beliefs
might be in this class. There’s no way to survey all the ways for justification to be
insufficient for knowledge, and see if all of them are irrelevant to the justification for
action. I think one way a justified belief can fall short of knowledge is if it is tied up
with false beliefs about the stakes of bets. It’s hard to say that that is irrelevant to
the justification of action.

It is by now reasonably well known that logical subtraction is a very messy and
complicated business. See, for instance, Humberstone (2000) for a clear discussion
of the complications. In general, unless it is analytic that Fs are Gs and Hs, for some
antecedently understood G and H, there’s nothing interesting to say about the class
of things that are G but not F. It will just be a disjunctive shambles. The same is
true for knowledge and justification. The class of true beliefs that are justified but
not known is messy and disjunctive. We shouldn’t expect to have any neat way of
overviewing it. That in part means we can’t say much interesting about it as a class,
contra premise 3 in the above argument. It also means the prospects for ‘solving the
Gettier problem’ are weak. We’ll turn to that issue next.

3 There is No Solution to the Gettier Problem
The kind of example that Edmund Gettier (1963) gives to refute the justified true
belief theory of knowledge has what Linda Zagzebski (2009, 117) aptly calls a “dou-
ble luck” structure. In Gettier’s original cases, there’s some bad luck that leads to a
justified belief being false. But then there’s some good luck that leads to an inference
from that being true. As was quickly realised in the literature, the good and bad luck
doesn’t need to apply to separate inferential steps. It might be that the one belief
that would have been false due to bad luck also ends up being true due to good luck.

This has led to a little industry, especially in the virtue epistemology section of
the market, of attempts to “solve the Gettier problem” by adding an anti-luck con-
dition to justification, truth and belief and hoping that the result is something like
an analysis of knowledge. As Zagzebski (1994) showed, this can’t be an independent
condition on knowledge. If it doesn’t entail truth, then we will be able to recreate the
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Gettier cases. But maybe a ‘fourth’ condition that entails truth (and perhaps belief )
will suffice. Let’s quickly review some of these proposals.

So Zagzebski (1996) suggested that the condition is that the belief be true be-
cause justified. John Greco (2010) says that the extra condition is that the beliefs be
“intellectually creditable”. That is, the primary that the subject ended up with a true
belief is that it was the result of her reliable cognitive faculties. Ernest Sosa (2007)
said that knowledge is belief that is true because it manifests intellectual competence.
John Turri (2011) says that knowledge is belief the truth of which is a manifestation
of the agent’s intellectual competence.

It should be pretty clear that no such proposal can work if what I’ve said in earlier
sections is remotely right. Assume again that v = 830, a = 832 and m = 10. The
agent believes that V ∈ [822, 842]. This belief is, we’ve said, justified and true. Does
it satisfy these extra conditions?

My short answer is that it does. My longer answer is that it does if any belief
derived from the use of a measuring device does, and since some beliefs derived from
the use of measuring devices amount to knowledge, the epistemologists are commit-
ted to the belief satisfying the extra condition. Let’s go through those arguments in
turn.

In our story, S demonstrates a range of intellectual competencies. She uses a
well-functioning measuring device. It is the right kind of device for the purpose
she is using. By hypothesis, she has had the machine carefully checked, and knows
exactly the accuracy of the machine. She doesn’t form any belief that is too precise
to be justified by the machine. And she ends up with a true belief precisely because
she has so many competencies.

Note that if we change the story so a is closer to v + m, the case that the belief
is true in virtue of S being so competent becomes even stronger. Change the case
so that a = 839, and she forms the true belief that V ∈ [829, 849]. Now if S had
not been so competent, she may have formed a belief with a tighter range, since
she could easily have guessed that the margin of error of the machine is smaller. So
in this case the truth of the belief is very clearly due to her competence. But as we
noted at the end of section 1, in the cases where a is near v+m, the argument that we
have justified true belief without knowledge is particularly strong. Just when the gap
between justification and knowledge gets most pronounced, the competence based
approach to knowledge starts to issue the strongest verdicts in favour of knowledge.

But maybe this is all a mistake. After all, the object doesn’t have the mass it has
because of S’s intellectual competence. The truth of any claim about its mass is not
because of S’s competence, or a manifestation of that competence. So maybe these
epistemologists get the correct verdict that S does not know that V ∈ [a – m, a + m]?

Not so quick. Even had a equalled v, all these claims would have been true. And
in that case, S would have known that V was within m of the measurement. What
is needed for these epistemological theories to be right is that there can be a sense
that a belief that p can be true in virtue of some cause C without C being a cause of p.
I’m inclined to agree with the virtue epistemologists that such a sense can be given.
(I think it helps to give up on content essentialism for this project, as suggested by
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David (2002) and endorsed inWeatherson (2004).) But I don’t think it will help.
There’s no real way in which a belief is true because of competencies, or in which the
truth of a belief manifests competence, in the good case where a = v, but not in the
bad cases, where a is in (0, m). These proposals might help with ‘double luck’ cases,
but there is more to the space between justification and knowledge than those cases.
Of course, I think the space in question includes some cases involving false beliefs
about the practical significance of p, but I don’t expect everyone to agree with that.
Happily, the Williamsonian cases should be less controversial.

4 What Can We Learn from Fallible Machines?
My presentation of Williamson’s argument in section 1 abstracted away from sev-
eral features of his presentation. In particular, I didn’t make any positive assumption
about what the agent can know when they find out that the machine reads a. Will-
iamson makes a suggestion, though he offers it more as the most internalist friendly
suggestion than the most likely correct hypothesis.

The suggestion, which I’ll call the Circular Reading Centred hypothesis, is that
the most the agent can know is that V ∈ [a–(e+m), a+(e+m)]. That is, the agent can
know that V is in a region centred on a, the ‘radius’ of which is the margin of error m,
plus the error on this occasion e. This is actually a quite attractive suggestion, though
not the only suggestion we could make. Let’s look through some other options and
see how well they work.

We said above that the agent can’t know more from a mismeasurement than
they can know from an accurate measurement. And we said that given an accurate
measurement, the most they can know is that V ∈ [v – m, v + m]. So here’s one
very restrictive suggestion: if a ∈ [v – m, v + m], then the agent can know that
V ∈ [v – m, v + m]. But we can easily rule that out on the basis of considerations
about justification. The strongest proposition the agent is justified in believing is
that V ∈ [a – m, a + m]. If the agent could know that V ∈ [v – m, v + m], then she
could know that V /∈ (v + m, a + m], even though she isn’t justified in believing this.
This is absurd, so that proposal is wrong.

We now have two principles on the table: S can’t know anything by a mis-
measurement that she knows on the basis of a correct measurement, and that she
can only know things she’s justified in believing. The first principle implies that
for all x ∈ [v – m, v + m], that V = x is epistemically possible. The second im-
plies that for all x ∈ [a – m, a + m], that V = x is epistemically possible. Our
next proposal is that the epistemic possibilities, given a reading of a, are just that
V ∈ [v – m, v + m] ∪ [a – m, a + m].

But this is fairly clearly absurd too. Assume that a > v + 2m. This is unlikely, but
as we said above not impossible. Now consider the hypothesis that V ∈ (v+m, a–m).
On the current hypothesis, this would be ruled out. That is, she would know it
doesn’t obtain. But this seems bizarre. There are epistemic possibilities all around it,
but somehow she’s ruled out this little gap, and done so on the basis of a horrifically
bad measurement.

This suggests two other approaches that are consistent with the two principles,
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and which do not have such an odd result. I’ll list them alongside the proposal we
mentioned earlier.
Circular Appearance Centred The strongest proposition the agent can know is that

V ∈ [a – (e + m), a + (e + m)].
Circular Reality Centred The strongest proposition the agent can know is that V ∈

[v – (e + m), v + (e + m)].
Elliptical The strongest proposition the agent can know is that V ∈ [v – m, a + m].
The last proposal is called Elliptical because it in effect says that there are two foci
for the range of epistemic possibilities. The agent can’t rule out anything within m
of the true value, or anything within m of the apparent value, or anything between
those.

Actually we can motivate the name even more by considering a slight generali-
sation of the puzzle that we started with. Assume that R is trying to determine the
location of an object in a two-dimensional array. As before, she has a digital measur-
ing device, perhaps a GPS locator trained on the object in question. And she knows
that margin of error of the device is m. The object is actually located at ⟨xv, yv⟩, and
the device says it is at ⟨xa, ya⟩. So the epistemic possibilities, by the reasoning given
above, should include the circles with radius m centred on ⟨xv, yv⟩ and ⟨xa, ya⟩. Call
these circles Cv and Ca. Unless ⟨xv, yv⟩ = ⟨xa, ya⟩, the union of these circles will not
be convex. If the distance between ⟨xv, yv⟩ and ⟨xa, ya⟩ is greater than 2m, the union
won’t even be connected. So just as we ‘filled in’ the gap in the one-dimensional
case, the natural thing to say is that any point in the convex hull of Cv and Ca is an
epistemic possibility.

But now see what happens if we say those are all of the epistemic possibilities,
i.e., that the agent knows that the true value lies in the convex hull of the two circles.
Here’s what it might look like.

Now consider the line from ⟨xv, yv⟩ to ⟨xa, ya⟩. No matter how bad the measure-
ment is, the convex hull of the two circles Cv and Ca will include no points more
than distance m from the line between ⟨xv, yv⟩ to ⟨xa, ya⟩. That is, the agent can
know something surprisingly precise about how close V is to a particular line, even
on the basis of a catastrophically bad measurement.

There are some circumstances where this wouldn’t be counterintuitive. Assume
that xv = xa, while yv and ya are very very different. And assume further that
⟨xa, ya⟩ is calculated by using two very different procedures for the x and y coor-
dinates. (Much as sailors used to use very different procedures to calculate longitude
and latitude.) Then the fact that one process failed badly doesn’t, I think, show that
we can’t get fairly precise knowledge from the other process.

But that’s not the general case. If the machine determines ⟨xa, ya⟩ by a more holis-
tic process, then a failure on one dimension should imply that we get less knowledge
on other dimensions, since it makes it considerably flukier that we got even one di-
mension right. So I think the space of epistemic possibilities, in a case involving this
kind of errant measurement, must be greater than the convex hull of Cv and Ca.

Fortunately, there are a couple of natural generalisations of the elliptical proposal
that avoid this complication. One of them says that the space of epistemic possibil-
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ities forms an ellipse. In particular, it is the set of all points such that the sum of
the distance from that point to ⟨xv, yv⟩ and the distance from that point to ⟨xa, ya⟩
is less than or equal to 2m + e, where e again is the distance between the measured
and actual value. As you can quickly verify, that includes all points on the line from
⟨xv, yv⟩ to ⟨xa, ya⟩, plus an extension of length m beyond in each direction. But it
doesn’t just contain the straight path between Cv and Ca; it ‘bulges’ in the middle.
And the considerations above suggest that is what should happen.

The other alternative is to drop the idea that the space of possibilities should be
elliptical, and have another circular proposal. In particular, we say that the space of
possibilities is the circle whose centre is halfway between ⟨xv, yv⟩ and ⟨xa, ya⟩, and
whose radius is m + e/2. Again, that will include all points on the line from ⟨xv, yv⟩ to
⟨xa, ya⟩, plus an extension of length m beyond in each direction. But it will include
a much larger space in the middle.

I think both of these are somewhat plausible proposals, though the second suf-
fers from a slightly weaker version of the objection I’m about to mount to the Cir-
cular Reality Centred proposal. But they do share one weakness that I think counts
somewhat against them. It’s easy enough to see what the weakness is in the one-
dimensional case, so let’s return to it for the time being, and remember we’re assum-
ing that a > v.

Consider a case where e is rather large, much larger than m. This affects how
far below v we have to go in order to reach possibilities that are ruled out by the
measurement. But it doesn’t affect how far above v we have to go in order to reach
such possibilities. Indeed, no matter how bad e is, we can be absolutely certain that
we know V < a + 2m, or that we know that V > a – 2m. That seems a little odd; if
the measurement is so badly mistaken, it seems wrong that it can give us such a fine
verdict, at least in one direction.

I don’t think that’s a conclusive objection. Well, I don’t think many of the consid-
erations I’ve listed here are conclusive, but this seems even weaker. But it is a reason
to look away from the elliptical proposal and back towards the circular proposals that
we started with.

If we just look at first order knowledge claims, it is hard to feel much of an
intuitive pull towards one or other of the alternatives. Perhaps safety based consider-
ations favour the Reality Centred over the Appearance Centred version, but I don’t
think the salient safety consideration is that strong.

If we look at iterated knowledge claims, however, there is a big problem with the
Reality Centred approach. The intuition here is clearer if we use numerical examples,
so I’ll work through a case with numbers first, then do the general version next.

Assume, as above, that v = 830, a = 834 and m = 10. So we have a pretty
decent measurement here. On the Reality Centred proposal, the strongest thing
that S can know is that V ∈ [816, 844]. So it is an epistemic possibility that V = 816.
Assume that that’s the actual possibility. Then the measurement is rather bad; the
new value for e is 18. Were V to equal 816, while a equalled 834, then on the Reality
Centred approach, the epistemic possibilities would be a circle of radius e + m, i.e.,
28, around the actual value, i.e., 816. So the strongest thing the agent could know
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is that V ∈ [788, 844]. On the other hand, if V were 844, the strongest thing the
agent could know is that V ∈ [824, 864]. Putting those together, the strongest thing
the agent can know that she knows is that V ∈ [788, 864]. That’s a very large range
already. Similar calculations show that the strongest thing the agent can know that
she knows that she knows is that V ∈ [732, 904].

Now I’ll grant that intuitions about second and third order knowledge are not
always maximally sharp. But I think it is very implausible that a relatively accurate
measurement like this could lead to such radical ignorance in the second and third
orders of knowledge. So I think the Reality Centred approach can’t be right.

The general form the case is as follows. The strongest thing the agent can know
is that V ∈ [v–(e+m), a+m]. The strongest thing she can know that she knows is that
V ∈ [v–3(e+m), a+3m]. And the strongest thing she can know that she knows that
she knows is that V ∈ [v – 7(e + m), a + 7m]. In general, we have exponential growth
of the possibilities as we add one extra order of knowledge. That seems absurd to
me, so the Reality Centred approach is wrong.

Note that this isn’t a problem with the Appearance Centred approach. The first-
order epistemic possibilities are that V ∈ [a–(e+m), a+ e+m]. If V is at the extremes
of this range, then e will be rather large. For example, if V were equal to a + e + m,
then the new error would be e + m, since the measured value is still a. So the range
of possibilities would be that V ∈ [a – ((e + m) + m), a + ((e + m) + m)]. Somewhat
surprisingly, those would also be the possibilities if V were equal to a – (e + m), since
the only feature of V that affects the epistemic possibilities for V is its distance from
a. So for all S knows that she knows, V could be anything in [a–(e+2m), a+(e+2m)].
Similar reasoning shows that for all V knows that she knows that she knows, V could
be anything in [a – (e + 3m), a + (e + 3m)]. In general, V has n’th order knowledge
that V is in [a – (e + nm), a + (e + nm)]. This linear growth in the size of the range of
epistemic possibilities is more plausible than the exponential growth on the Reality
Centred approach.

So all things considered, I think the Circular Appearance Centred approach is
the right one, as Williamson suggests. Any simple alternative seems to have rather
counterintuitive consequences.
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