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Revision and CleanUp

Probability Functions

A probability function with respect to an entailment relation ` has as
domain a set S of propositions closed under conjunction, disjunction and
negation, and as range R), and satisfies the following four axioms for all
A, B ∈ S

1 If A is a `-theorem, then Pr(A) = 1

2 If A is a `-antitheorem, then Pr(A) = 0

3 If A ` B, then Pr(A) ≤ Pr(B)

4 Pr(A) + Pr(B) = Pr(A ∨ B) + Pr(A ∧ B)
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Revision and CleanUp

Classical Probability

If ` is classical implication, those axioms can be simplified a lot.

We can replace the third axiom with an axiom stating tautologies
have probability 1

And we can replace the fourth axiom with an axiom saying Pr(A) +
Pr(B) = Pr(A ∨ B) when A and B are disjoint
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Revision and CleanUp

Classical Probability

I showed last time that we could prove (classically) that if all
equivalent propositions had the same probability, then if A entailed B,
B’s probability was not less than A

I should have noted we could start with something (apparently)
weaker

We can prove that if all tautologies have probability 1, then
equivalent propositions have the same probability

Assume A and B are equivalent

Then A ∨¬B is a tautology, and A and ¬B are disjoint

So Pr(A) + Pr(¬B) = 1, so Pr(A) = 1 - Pr(¬B). But Pr(B) = 1 -
Pr(¬B), so Pr(A) = Pr(B)
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Revision and CleanUp

Truth Tables

In circumstances where classical truth tables are useful modelling
devices, there’s a simple way to think about probability.

So imagine you’re in a setting where (a) you don’t care about the
internal structure of atomic propostions, and (b) you’ve only got
finitely many atomic propositions to consider.

In such circumstances, probability theory is basically measure theory
over the rows of the truth table.

That is, you generate probability functions by assigning a number (a
measure) to each row of the truth tables such that each measure is
non-negative, and the measures sum to 1.

Then Pr(A) is the sum of the measures of the rows on which A is true.
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Revision and CleanUp

Conditional Probability Introduced

As well as being interested in the probability of events (e.g. whether
it will rain tomorrow), we’re sometimes interested in probabilities
conditional on other events (e.g. whether it will rain tomorrow
conditional on rain being forecast).

There is a standard definition for the conditional probability of B
given A.

Pr(A|B) =df
Pr(AB)

Pr(B)
, if Pr(B) > 0
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Revision and CleanUp

Independence

We say that A and B are probabilistically independent iff Pr(AB) =
Pr(A)Pr(B).
This is equivalent to each of the following claims, which in turn justify the
name.

Pr(A|B) = Pr(A)

Pr(B|A) = Pr(B)

The intuitive idea is that taking one as given doesn’t change the other.
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Revision and CleanUp

Conditional Forms of All Axioms

So as to be clear on what the domain of Pr is, it is perhaps useful to take
Pr to be always conditional. This gives the following axiomatisation, where
Pr is a function from pairs of propositions (the second of which is not an
antitheorem) to reals.

1 If C→A is a `-theorem, then Pr(A|C) = 1

2 If C→A is a `-antitheorem, then Pr(A|C) = 0

3 If C→A ` C→B, then Pr(A|C) ≤ Pr(B|C)

4 Pr(A|C) + Pr(B|C) = Pr(A ∨ B|C) + Pr(A ∧ B|C)

5 Pr(AB|C) = Pr(A|BC)Pr(B|C)
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Revision and CleanUp

Recovering Unconditional Probability

We now take ”Pr(A)” to be a shorthand for Pr(A|T), where T is some
tautology

Again, if the logic is classical, the previous axioms can be simplified
somewhat

The idea still is that conditional on any C, probabilities are in [0, 1],
logical truths/falsehoods take the extreme values, logically weaker
propositions have a higher probability, and the probability of a
disjunction of exclusive disjuncts is the sum of the probability of the
disjuncts.

When we don’t care about the background C, we can use the simple
axiom Pr(AB) = Pr(A|B)Pr(B)
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Revision and CleanUp

An Important Theorem

Pr(A) = Pr(AB) + Pr(A¬B)

Pr(AB) = Pr(A|B)Pr(B)

Pr(A¬B) = Pr(A|¬B)Pr(¬B)

Pr(A) = Pr(A|B)Pr(B) + Pr(A|¬B)Pr(¬B)

Note it follows from this that Pr(A|B) and Pr(A|¬ B) can’t be on the
’same side’ of Pr(A), either both greater than Pr(A) or both less than
Pr(A). We’ll prove this in two sections time.
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Revision and CleanUp

Cleaning Up

I mentioned last time that some of the foundational proofs relied on
classical logic, but I didn’t prove this.

I don’t have a particularly good answer as to how much work
distributivity principles on the underlying lattice do.

But I can say a bit about how much the fact that the underlying logic
is classical does.

In intuitionistic probability, it’s impossible to get from the equality of
the probability of equivalent propositions, to the claim that weaker
propositions have greater probability.

And it is impossible to get from the ’simple’ addition axiom Pr(A) +
Pr(B) = Pr(A ∨ B) for disjoint A, B to the ’general’ axiom Pr(A) +
Pr(B) = Pr(A ∨ B) + Pr(A ∧ B).
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Revision and CleanUp

Weaker Propositions are More Probable?

This might be too much ’inside baseball’ for those of you who don’t
care about intuitionistic logic, but it won’t take too long.

Consider a Kripke model with W = {1, 2, 3, 4}, R =
{< 1, 1 >, < 1, 2 >, < 1, 3 >, < 1, 4 >, < 2, 2 >, < 2, 3 >,
< 3, 3 >, < 4, 4 >} and V(p) = {3}.
Define a ’measure’ m such that
m(1) = 0.3, m(2) = −0.1, m(3) = 0.5, m(4) = 0.3.

Then define Pr(A) = the sum of m(x) over the x that force A

That satisfies the addition axiom, and equivalent propositions get
equal probability, but Pr(p) = 0.5, while Pr(¬¬p) = 0.4
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Revision and CleanUp

Simple and General Addition

This one is a bit easier

Consider a language with just two atomic variables, p and q

Define a Pr such that Pr(A) = 1 if A is an intuitionistic consequence
of p ∨ q, and 0 otherwise

That satisfies all the axioms we’ve considered except the general
addition axiom, which fails because Pr(p) = Pr(q) = Pr(p ∧ q) = 0,
while Pr(p vee q) = 1.
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Countable Additivity

Infinitary Addition

Sometimes infinite sums don’t seem to be well defined

For instance, no real number is the intuitive sum of 1+2+3+...

For a different reason, no real number is the intuitive sum of
1-1+1-1+1...

We could say that’s (1-1)+(1-1)+... = 0+0+... = 0

Or we could say that it is 1+(-1+1)+(-1+1)+... = 1+0+0+... = 1

Better to say it is not defined at all
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Countable Additivity

Limits of Sums

But some sums converge on a stable value.

That is, as we keep on adding terms we get closer and closer to a
particular value.

In that case, we say the sum is the value we converge on.

More formally, if x1, x2, ... are such that

∃s.∀e > 0.∃k ∈ N.∀n > k .

n∑
j=1

xj ∈ (s − e, s + e)

We’ll say that s = x1 + x2 + ....
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Countable Additivity

Sums of Probabilities

One can prove (assuming classical mathematics), that if x1, x2, ... are
the probabilities of disjoint propositions p1, p2, ..., then x1 + x2 + ...
exists.

This is a consequence of a more general result that if ∀i .xi ≥ 0 and
∃s∀n

∑n
k=1 xk < s, then x1 + x2 + ... exists.

So it might make sense to ask whether
Pr(p1 ∨ p2 ∨ ...) = Pr(p1) + Pr(p2) + ...
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Countable Additivity

Some Interesting Limiting Sums

It’s useful to remember a few examples of limits in order to work with
various examples.

The most crucial result for our purposes is
∞∑

k=1

r−k =
1

r − 1

So, for instance, 1
3 + 1

9 + ... = 1
2
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Countable Additivity

An Open Question

Say that for each n ∈ 1, 2, ..., the probability that that there are exactly n
jabberwocks is 1

2n+1 .

What is the probability that there is at least 1 jabberwock?
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Countable Additivity

An Open Question

You might try to reason as follows

The probability that there is at least 1 jabberwock is the probability
that there’s exactly 1, plus the probability that there’s exactly 2 plus
etc

That is, it’s 1
4 + 1

8 + ...

That is, it’s 1
2

That reasoning is not sound given the axioms to date.
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Countable Additivity

Inequality or Equality

The ’addition’ axiom we have only works for pairwise addition. You can’t
infer much from that about infinitary addition.

You can infer something

Finite addition tells us the probability that there are between 1 and n
jabberwocks, for any n

And as n goes to infinity, that probability goes to 0.5

Since that proposition entails there are some jabberwocks, the
probability that there are some jabberwocks is at least 0.5
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Countable Additivity

Inequality or Equality

In general, if p1, p2, ... are pairwise inconsistent, the most we can prove is

Pr(p1 ∨ p2 ∨ ...) ≥ Pr(p1) + Pr(p2) + ...

If we want equality, we have to add it as an axiom.
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Countable Additivity

The Flat Distribution Over N

There is a reason some people resist adding this as an axiom.

It would rule out a flat distribution over N

Let the domain be subsets of N
Let Fn be the number of numbers ≤n such that F(n), for any
predicate F, and define Pr as follows

Pr(Fa|Ga) = lim
n→∞

Fn

(F ∧ G )n

That would be ruled out by the equality axiom.
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Countable Additivity

The Flat Distribution Over N

The flat distribution says that Pr(a = n) = 0 for all n

But it says that Pr(a = 1 ∨ a = 2 ∨ ... ) = 1

Indeed, any distribution that says that there are a countable infinity of
choices, and each is equally probable, will have this feature

Some people (including me!) take that as a proof that there can’t be
a probability distribution making each member of a countable infinity
equally probable

Other people take it as a proof that
Pr(p1 ∨ p2 ∨ ...) = Pr(p1) + Pr(p2) + ... if (p1, p2, ... are pairwise
disjoint) is not an axiom
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Countable Additivity

New Axiom

But we will take that as an axiom

So we now take the domain of a probability function to be closed
under countable union

And we replace the (special) addition axiom with

Pr(p1 ∨ p2 ∨ ...|C ) = Pr(p1|C ) + Pr(p2|C ) + ...

(for any p1, p2, ... that are pairwise disjoint)
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Countable Additivity

Terminology

This is called the axiom of countable additivity

A countably additive probability function is one that satisfies it

Ideally, we’d use the phrase ’finitely additive’ probability function for
any function that satisfies the finite addition axiom

In practice, many people use that phrase only for functions that are
not countably additive, but which do satisfy the finite additivity axiom
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A Little Set Theory

Same Size Sets

I should say a little more about what I mean by a ’countable’ set, and
here is as good a time as any to do it

There is an interesting question about what it is to say sets are the
same size

The working definition that most mathematicians use is Cantor’s

Two sets are the same size iff there is a one-one mapping from one to
the other
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A Little Set Theory

Cantor’s Definition

We’ll write |S1| for the size of S1. Then Cantor’s definition is

|S1| = |S2| ↔

∃f ⊆ S1 × S2 :

(∀x ∈ S1∃!y ∈ S2 :< x , y >∈ f )∧

(∀y ∈ S2∃!x ∈ S1 :< x , y >∈ f )

That is, there’s a set of ordered pairs, the first of which is in S1, the
second of which is in S2, and each member of S1 is the first member
in exactly one of the ordered pairs, and each member of S2 is the
second member of exactly one.
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A Little Set Theory

Nice Consequences

This gives us just the results we want for finite cases

Any two sets with n members are the same size, for any finite n

And it does so without assuming there are such things as natural
numbers

So in principle it could be used to measure the size of infinite sets
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A Little Set Theory

Odd Consequences

When we do so, we get some odd results

Let S1 be the set of natural numbers, and S2 the set of even numbers

Then there’s an easy mapping from one to the other, the mapping
< 1, 2 >, < 2, 4 >, ....

So it turns out these sets are the same size

So a set can be the same size as one of its proper subsets
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A Little Set Theory

Cantor’s Definition

For reasons too numerous to go into here, mathematical orthodoxy is
that we should accept this odd result

And philosophers have (I think correctly) followed them

There is a useful generalisation of Cantor’s generalisation that we
won’t prove, but is useful to have

If there is a mapping from S1 to a subset of S2, and from S2 to a
subset of S1, then there is a mapping from S1 itself to S2.

We’ll often use that to prove sets are the same size
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A Little Set Theory

Powersets

When you first see the odd result, you might be tempted to conclude
that all infinite sets are the same size

That’s not a consequence of Cantor’s definition

In fact we can prove a rather important result inconsistent with it

The powerset of S is the set of all subsets of S (including the null set
and S itself)

We’ll write this P(S)

We can prove |P(S)| 6= |S|
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A Little Set Theory

Powersets

Assume |P(S)| = |S|
Then there is a mapping f from S to P(S)

Let R = x : x ∈ S ∧ x /∈ f (x)

Since by definition R ⊆ S, R ∈ P(S)

So there must be some y ∈ S that is mapped onto R, i.e. f(y) = R

If y ∈ R, then y /∈ f(y), so y /∈ R

But if y /∈ R, then y ∈ S and y /∈ f(y), so y ∈ R

Contradiction
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A Little Set Theory

Countable and Uncountable Sets

As always, let N be the set of natural numbers.

One consequence of the above result is that some sets, for example
P(N) are not the same size as N.

We’ll say that sets that are the same size as N are countable.

We won’t prove it here, but it is provable that R is the same size as
P(N), a fact we’ll use a bit in what follows
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A Little Set Theory

Set of all Sets

One consequence of |P(S)| > |S| is that there is no set of all sets

To see this, assume S is the set of all sets

Then P(S) ⊆ S, since every member of P(S) is a set

So |P(S)| ≯ |S|, contrary to what we proved above
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A Little Set Theory

Consequences for Probability

Recall that when we were setting things up formally, probabilities
were defined over sets of sets, the latter of which we sometimes took
to be propositions

The set that the probability is defined over can’t be the set of all sets,
because there is no such set

As we’ll go along, we’ll see more and more reasons for thinking that
there are serious limits to which propositions can have probabilities

This matters philosophically I think; there are a lot of applications
where people assume that every proposition has a probability, and this
assumption is typically false.
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Conglomerability

Finite Conglomerability

We say that a probability function is finitely conglomerable iff there is
no proposition H and partition E1, E2, ..., En such that either for all i,
Pr(H|Ei ) > Pr(H), or for all i, Pr(H|Ei ) < Pr(H).

By ’partition’ here we mean a set of propositions that are mutually
exclusive and jointly exhaustive

Given the axioms (and classical logic, which we’re assuming basically
always from now on) we can prove that all probability functions are
finitely conglomerable.
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Conglomerability

Proof of Finite Conglomerability

Assume that ∀i .Pr(H|Ei ) > Pr(H). (The other case works the same way.)

Pr(H) = Pr(HE1 ∨ HE2 ∨ ... ∨ HEn)

= Pr(HE1) + Pr(HE2) + ... + Pr(HEn)

= Pr(H|E1)Pr(E1) + Pr(H|E2)Pr(E2) + ... + Pr(H|En)Pr(En)

> Pr(H)Pr(E1) + Pr(H)Pr(E2) + ... + Pr(H)Pr(En)

= Pr(H)(Pr(E1) + Pr(E2) + ... + Pr(En))

= Pr(H)Pr(E1 ∨ E2 ∨ ... ∨ En)

= Pr(H)
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Conglomerability

Finite Congolomerability

Conglomerability has a nice translation into regular talk

It says that the probability of H can’t be outside the realm of the
probability of H given possible evidence Ei

So it is a nice result to have, because that seems like it should be the
case
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Conglomerability

Exclusive and Inclusive Disjunction

You might be reminded by conglomerability of principles like
or-elimination in logic

If we have Ei →H for each i in a partition E1, E2, ..., En , then we
have H

Similarly, if Pr(H|Ei ) > x for each i, then Pr(H) > x

But these principles are not the same

The logical rule holds for either inclusive or exclusive disjunction

The probabilistic rule only holds for exclusive disjunction
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Conglomerability

Not a Counterexample

Say that you’re going to draw two cards at random from a deck
containing the ace of spades, the ace of clubs and the king of hearts

Let p = You draw the ace of spaces

Let q = You draw the ace of clubs

Let r = You draw both aces

Then Pr(r) = 1
3

But p ∨ q is guaranteed to be true

And Pr(r|p) = Pr(r|q) = 1
2
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Countable Conglomerability

Countable Conglomerability

We might wonder about generalising the conglomerability principle to
larger partitions

For instance, consider the case where the partition is a countable set
E1, E2, ...

Countable conglomerability is the principle that Pr(H) is not always
above or always below Pr(H|Ei )

Given countable additivity, we can prove countable conglomerability
using essentially the earlier proof
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Countable Conglomerability

Proof of Countable Congolomerability

Assume that ∀i .Pr(H|Ei ) > Pr(H). (The other case works the same way.)

Pr(H) = Pr(HE1 ∨ HE2 ∨ ...)

= Pr(HE1) + Pr(HE2) + ...

= Pr(H|E1)Pr(E1) + Pr(H|E2)Pr(E2) + ...

> Pr(H)Pr(E1) + Pr(H)Pr(E2) + ...

= Pr(H)(Pr(E1) + Pr(E2) + ...)

= Pr(H)Pr(E1 ∨ E2 ∨ ...)

= Pr(H)
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Countable Conglomerability

The Flat Distribution Again

That proof used countable additivity twice over

We might wonder whether it is necessary

The answer is that it is

Indeed the flat distribution we’ve seen provides a nice counterexample
to countable conglomerability
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Countable Conglomerability

Violating Conglomerability

Define F to mean is a multiple of 10

Consider each of the sets {n, 10n, 100n, ... } where n is not a
multiple of 10

Those sets form a partition of N
For any such set S, Pr(Fa|a ∈ S) = 1

But Pr(Fa) = 1
10
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Countable Conglomerability

A More Dramatic Violation

Assume i and j are numbers randomly chosen from N
Consider Pr(i > j)

It’s easy enough to show that ∀n. Pr(i > j | i = n) = 0

And ∀n. Pr(i > j | j = n) = 1

Whatever value Pr(i > j) takes, we’ll have a massive conglomerability
failure
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Countable Conglomerability

Generalising This Result

So we’ve shown that if we assume countable additivity, we can prove
countable conglomerability

And without countable additivity, this proof doesn’t go through

I was hoping to find a proof of something stronger

Namely that if Pr is not countably additive and its domain is closed
under countable union, then Pr is not countably conglomerable

But I couldn’t find a proof of that, or a citation of it, or a
counterexample

I’ll keep looking and hopefully find something for next week
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Conglomerability in Decision Theory

Conglomerability in Decision Theory

A decision-based version of finite conglomerability is central to
orthodox decision theory

First some terminology

Let A � B mean that A is preferred to B

Let A � B mean that A is at least as preferred as B

Intuitively, conditional preferences are just preferences over
conjunctions. So if A is preferred to B given C, that just means AC �
BC
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Conglomerability in Decision Theory

Conglomerability in Decision Theory

Assume throughout that E1, ..., En is a partition of possibility space.

Conglomerability for Preference (∀i .EiA � EiB)→ A � B

That is, if A is better than B conditional on any member of the partition,
A is better than B

Again, note the importance of this being a partition

This really isn’t just or-elimination

On the other hand, it’s a pretty plausible principle
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Conglomerability in Decision Theory

Utility Functions

To see how this generalises to the infinite case, we need a little
decision theory

Decision theorists attribute to each agent a utility function u. (We’re
skipping for now the reasons they do this.)

If A � B, then u(A) > u(B)

More importantly, u measures strength of preference

Roughly, if A is preferred over B by as much as B is preferred over C,
then u(A) - u(B) = u(B) - u(C)
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Conglomerability in Decision Theory

Expected Value

Here is a general definition of the expected value of a random variable X.
We’ll restrict our attention to the case where X takes on at most finitely
many values, because that’s all that’s needed for now.

Exp(X ) =
∑
k

k · Pr(X = k)

A random variable is just any expression that takes on different possible
values. So we can talk about the expected height of the next person that
walks into the room, or the expected age of the next U.S. President, or
the expected utility of performing a particular action.

Note that this will frequently not be a possible value of X
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Conglomerability in Decision Theory

Expected Value and Action

The core of modern decision theory is the idea that action A is preferred
to action B iff the expected utility of doing A is higher than the expected
utility of doing B.

Here’s a quick example of this

If p is true, then u(A) = 10, and u(B) = 20

If p is false, then u(A) = 5 and u(B) = 1

And Pr(p) = 0.3

So Exp(u(A)) = 10 · 0.3 + 5 · 0.7 = 6.5

And Exp(u(B)) = 20 · 0.3 + 1 · 0.7 = 6.7

So B is better to do, although probably A will have the better
outcome
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Conglomerability in Decision Theory

The Two-Envelope Paradox

If we assume that u is unbounded above, i.e. that utilities can be
arbitrarily high, we get a rather odd paradox

Formally, we can state the puzzle using two random variables, X and
Y

For each n ∈ 0, 1, 2, ..., Pr(X = 2n) = 2
5 ×

3n

5n

I’ll leave it as an exercise to prove that those probabilities sum to 1

Pr(Y=1) = Pr(Y=2) = 1
2

u(A) = XY, and u(B) = X(3-Y)
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Conglomerability in Decision Theory

The Two-Envelope Paradox

We can give a more intuitive characterisation of what’s going on

Take a biased coin, with a 3
5 chance of landing heads, two unmarked

envelopes, and put something worth 1 ’util’ in the first envelope

Flip the coin, and if it lands tails, skip to the next step, while if it
lands heads, double the value (in utils) in the first envelope and repeat

Once the coin lands tails once, put double the amount in the second
envelope

Now shuffle the envelopes, and offer one of them to a friend
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Conglomerability in Decision Theory

The Two-Envelope Paradox

Intuitively, it should not matter which envelope the friend receives

Let A be the action of taking the left-most envelope, and B taking
the right-most envelope

A little observation shows that the informal story we’ve told is well
modelled by the formal story two slides back

Now we’ll try to argue that B is preferable to A.
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Conglomerability in Decision Theory

The Two-Envelope Paradox

We’ll write things like A=4 meaning that envelope A contains
something worth 4 utils

Conditional on A=1, we know B=2, so B is preferable to A

If A=2n, for n > 0, then there are two ways this could come about

Either X = 2n and Y = 1, so B = X = 2n+1, or X = 2n−1 and Y = 2,
so B = 2n−1

The prior probability of the first of these is 3n

5n+1

And the prior probability of the second is 3n−1

5n
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Conglomerability in Decision Theory

The Two-Envelope Paradox

The prior probability of A = 2n and B = 2n+1 is 3n

5n+1

And the prior probability of A = 2n and B = 2n−1 is 3n−1

5n

Those are the only ways that A = 2n could come about

So Pr(A = 2n) = 3n

5n+1 + 3n−1

5n = 8×3n−1

5n+1

So Pr(B = 2n+1|A = 2n) =
3n

5n+1

8×3n−1

5n+1

= 3
8

And from that it quickly follows that Pr(B = 2n−1|A = 2n) = 5
8
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Conglomerability in Decision Theory

The Two-Envelope Paradox

So conditional on envelope A containing 2n, there is a 3
8 chance that

B contains twice as much, and 5
8 chance that it contains 1/2 as much.

So conditional on envelope A containing 2n, the expected value of the
contents of B is
3
8 × 2× 2n + 5

8 ×
1
2 × 2n

And a little calculation shows that is equal to 17
16 × 2n
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Conglomerability in Decision Theory

The Two-Envelope Paradox

In preference terms that we put before, we have the following true for
all values of n

(Take envelope B)∧A = 2n �(Take envelope A)∧A = 2n

The conglomerability principle we were considering would say that
entails that (Take envelope B) � (Take envelope A)

Not so fast!

The exact same calculations show that for all n

(Take envelope A) ∧B = 2n �(Take envelope B)∧B = 2n

And conglomerability now says that (Take envelope A) � (Take
envelope B)
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Conglomerability in Decision Theory

The Two-Envelope Paradox

We can put this all more dramatically

You know before looking that if you look in one of the envelopes,
either of them, you’ll prefer to have the other

Indeed you’ll pay to have the other

And that’s true whichever envelope you look in

Some people take this to show that the setup is a money pump

We’ll say more about money pump arguments in subsequent lectures
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Conglomerability in Decision Theory

A Puzzle About Conglomerability for Decisions

It seems we have to give up one of the following principles

1 � is anti-symmetric

2 u is unbounded above

3 Countable conglomerability for decisions

And if we give up 3, we have to give up one of

1 Countable conglomerablity for credences

2 That credences are governed by the same principles as decisions
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Conglomerability in Decision Theory

Bad Company Objection?

If we take option 3, we have two somewhat distinct reasons for giving up
countable conglomerability for credences (i.e. subjective probabilities)

1 As we’ll see in upcoming weeks, some theorists think that all
constraints on credences follow from constraints on rational decisions.
If that’s right, and we have to give up countable conglomerability for
decisions, there is a direct argument against countable
conglomerability for credences

2 We might think that the intuitive support for countable
conglomerability for credences is undermined by the inconsistency
(relative to some assumptions) of countable conglomerability for
decisions. Think of this as a ’bad company’ argument.

We have to do a lot more work before we can evaluate these arguments.
Some of that work has to do with ’flat’ distributions.
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Flat Distributions

Logical Probability

Traditionally people thought of probability as a kind of ’logical’ relation

Consider again the model I mentioned of probabilities as measures on
truth tables

Given the way I set things up, there is one very natural measure you
might be pushed to

That’s the measure that assigns equal weight to each row

Something like this idea is behind the traditional ’logical’
interpretation of probability
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Flat Distributions

Logical Probability

This might seem like a bad idea, because probabilities will now be
massively model dependent

It would be nice to have something more precise to say at this point
about what was driving the old idea

And by ’old’ here, I mean a view that was looking creaky when
Keynes wrote in the 1900s

To the extent that the view has modern adherents, they tend to have
complicated views about what is the right model
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Flat Distributions

Flat Distributions

There is a modern descendent of this old view though

That’s the view that when you are completely without evidence, you
should distribute credences/probabilities equally over open possibilities

If there are countably many open possibilities, that leads to violations
of countable additivity

In other cases it leads to worse results
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Flat Distributions

United Kingdom Puzzle

Jack is told that Smith is from either the United Kingdom or the
Republic of Ireland

So he assigns probability 1
2 to Smith’s being from the United Kingdom

Jill is told that Smith is from either England, Scotland, Wales or
Ireland

So she assigns probability 3
4 to Smith’s being from England, Scotland

or Wales

Oddly, despite being given in some sense the same information, Jill
ended up assigning a higher probability to an (in some sense) weaker
proposition

Perhaps that isn’t too odd if Jack and Jill don’t know the structure of
the United Kingdom

But odder results are to follow
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Flat Distributions

Breakfast Puzzle

What’s the probability that I had Vegemite on toast for breakfast?

You might think that, if you know that’s a possibility but don’t know
anything else, that this probability should be 1

2

What’s the probability that I had toast for breakfast?

You might think that, if you know that’s a possibility but don’t know
anything else, that this probability should be 1

2

But given that I definitely had toast if I had Vegemite on toast, it follows
that the probability of my having Vegemite on toast, conditional on my
having toast, is 1. And that shouldn’t follow from minimal information.
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Flat Distributions

Cube Factory

Jack is told that a factory makes cubes, and that every cube has a
side length between 0 and 2cm

So he assigns probability 1
2 to the proposition that the next cube has

a side length between 0 and 1cm.

Jill is told that a factory makes cubes, and that every cube has a
volume between 0 and 8cm3

So she assigns probability 1
8 to the proposition that the next cube has

a volume between 0 and 1cm3.

This is odd

The information they got was provably equivalent

And they end up assigning different probabilities to provably
equivalent propositions
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Flat Distributions

Chord Puzzle

Puzzle: Given a circle of unit radius, what is the probability that a chord
randomly chosen on it has length >1?

Arguably there are four different answers to this puzzle

1 1
2

2 2
3

3

√
3

2

4 3
4
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Flat Distributions

Chord Puzzle: Answer 1
2

Chord lengths are between 0 and 2

So the probability that a given length is >1 is 1
2
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Flat Distributions

Chord Puzzle: Answer 2
3

Picking a chord is equivalent to picking two points

When all we care about is the chord length, the first point is arbitrary

So it’s equivalent to given a point, picking another point

If the second point is within 60◦of the first, in either direction, the
chord length will be < 1

So the probability that it is > 1 is 1
3
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Flat Distributions

Chord Puzzle: Answer
√

3
2

For each point in the circle, there is exactly one chord it is the
midpoint of

So if we select a radius (which will bisect the chord), then select a
point on it, we’ll have picked a unique chord

Again, if all we care about is chord length, the choice of radius is
irrelevant

On any given radius, if we pick a point less than
√

3
2 of the way out

from the centre, we’ll have picked out a chord with length > 1.
(Exercise: prove this)

So the probability that the chord length is > 1 is
√

3
2
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Flat Distributions

Chord Puzzle: Answer 3
4

Perhaps going via a two-step process is unnatural

Better to just measure the area of points that are midpoints of chords
with length > 1

The result from the previous slide shows that is 3
4 of the area of the

original circle

So the probability that our chord has length > 1 is 3
4
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Flat Distributions

Chord Puzzle

The point of these puzzles is not to suggest that one of these is the
correct answer.

Rather, the point is that none of them are.
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Flat Distributions

Philosophical Consequences

Probability is not a measure of ignorance.

We can’t just say that the correct probability measure assigns equal
probability to all options we haven’t ruled out

We can’t do that because there are too many incompatible ways to
do it

There’s a philosophical argument for the same conclusion. (The following
is not entirely flippant!)

1 Probability is a guide to life

2 Ignorance is not a guide to life

3 So probability is not a measure of ignorance
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Lesbegue Measure

Rotational Invariance

Let’s try to define a measure on subsets of the unit ’circle’ [0, 1) that is
rotationally invariant.

The unit circle is a picturesque way of thinking about the interval [0,
1)

So think about the points arranged on a clockface, with 0 at the top,
1
4 at 3 o’clock, etc

The idea then is to find a measure such that if you can get from S to
S’ by rotating S around the circle, then S and S’ should have the
same measure

The measure we’ll end up with is called the Lesbegue measure
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Lesbegue Measure

Formalisms

First, define what a rotation is. The binary function ⊕ is defined in [0, 1)
× [0,1) as follows

x ⊕ y =

{
x + y if x + y < 1

x + y − 1 if x + y ≥ 1

Then the definition of rotational invariance is

If m(S) = x and y ∈ [0, 1) then m({x ⊕ y : x ∈ S}) = x
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Lesbegue Measure

Formalisms

What we’re interested in then is constructing as large a (normalised)
measure as possible that is rotationally invariant

Remember that a measure is a countable additive function over
subsets of some universe

So if A and B are disjoint sets, m(A ∪ B) = m(A) + m(B)

And more generally, if A1, ... are disjoint sets, then
m(A1 ∪ ...) = m(A1) + ...

A normalised measure is one for which m(U) = 1

Since our universe is [0, 1), we should restrict our attention to
normalised measures
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Lesbegue Measure

Goal

What we’re going to show is that there is no rotationally invariant
normalised measure definable over all members of P[0, 1).

In probabilistic terms, you can’t even define a probability function over
every subset of [0, 1) if you want to insist on rotational invariance.

We already saw some set-theoretic reasons why probability functions can’t
be complete. There are also reasons ’internal’ to probability to think this.
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Lesbegue Measure

Measures and Lengths

This measure has some nice properties

If S = [x , y), then m(S) = y − x

The formal proof of this is a little long, and we’ll basically skip it

But note that there’s a quick proof that if y − x = 1
n for n ∈ N,

S = [x , y), then m(S) = y − x follows from rotational invariance

So if y − x = m
n for m, n ∈ N, the result follows from additivity

And the complete result follows by countable additivity
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Lesbegue Measure

ZF and ZFC

When modern set theory was being developed in light of Russell’s
paradox, a number of axioms were fairly widely accepted

These included powerset and infinity

But one new axiom was controversial, the axiom of choice

So much so that in the contemporary naming we distinguish ZF (the
Zermelo-Frankel axioms) from ZFC (Zermelo-Frankel-Choice)
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Lesbegue Measure

Axiom of Choice

There are a few different ways to formulate the axiom of choice. Here’s
the one we will use.

Let S be any set of disjoint sets

Then there exists a choice set C such that ∀s ∈ S .∃!x ∈ C .x ∈ s

As Russell put it, ”The Axiom of Choice is necessary to select a set
from an infinite number of socks, but not an infinite number of shoes”

The axiom of choice has a *lot* of power when it comes to proving
theorems.
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Lesbegue Measure

Partition of [0, 1) by Rational Numbers

Consider each set of numbers of the form {x : |x − s| ∈ Q} for
s ∈ [0, 1)

Q is the set of rational numbers

So the sets above are sets of numbers that are separated from each
other by a rational number

Actually, they are numbers that are separated from some ’seed’ s by a
rational number, but since being separated by a rational number is an
equivalence relation, what I wrote will do just as well
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Lesbegue Measure

Partition of [0, 1) by Rational Numbers

Let S be the set of every such set {x : |x − s| ∈ Q} for s ∈ [0, 1)

Since s ∈ {x : |x − s| ∈ Q} for s ∈ [0, 1), every s ∈ [0, 1) is in one of
these sets

Moreover, since being separated by a rational number is an
equivalence relation, every number is in exactly one of them

So S is a partition of [0, 1), a set of sets such that every number in
[0, 1) is in exactly one of its members
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Lesbegue Measure

The Choice Set and Its Rotations

Now choice tells us we can generate a ’choice set’ from S

Call this set C0

For every x ∈ Q ∩ [0, 1) let Cx = {y ⊕ x : y ∈ C0}
Let C be the set of all of these Cx

We now want to prove that C is a partition of [0, 1)
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Lesbegue Measure

The Choice Set and Its Rotations

Assume a ∈ Cx ∧ a ∈ Cy where x 6= y

Then either a− x or a− x + 1 is in C0

And either a− y or a− y + 1 is in C0

So two of a− x , a− x + 1, a− y , a− y + 1 is in C0

But those numbers differ from each other by a rational number

And that contradicts the assumption that C0 contains exactly one
member of each set in S
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Lesbegue Measure

The Choice Set and Its Rotations

For any a ∈ [0, 1), there is some set s ∈ S it is in

And there is some number x ∈ s in C0

So if a ≥ x , then a ∈ Ca−x , and if a < x then a ∈ Ca−x+1

Either way, it is in some set in C
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Lesbegue Measure

The Choice Set and Its Rotations

So C is a partition

Since there are countably many rational numbers in [0, 1), it is a
countable partition

So if the sets in it have a measure, the measure of those sets must
sum to 1

But since the sets in it are constructed by rotation, they must have
the same measure

This is impossible

If this measure is 0, then the sum of the measures of the set of C is 0

If this measure is > 0, then the sum of the measures of the set of C is
∞
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Lesbegue Measure

Conclusions about Unmeasurability

So C0 simply does not have a Lesbegue measure

Indeed, quite a lot of sets do not

This follows from a simple assumption that the measure is countably
additive, and rotationally invariant
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Lesbegue Measure

Required Set Theory

We used the Axiom of Choice here

It was necessary to go beyond ZF; ZF is consistent with all sets being
measurable

But the result, that some sets are not measurable is not *equivalent*
to Choice

Indeed, it is a lot weaker

But going into how much weaker would (a) take us a long way afield,
and (b) go well beyond what I’m competent in
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Lesbegue Measure

Philosophical Consequences

Not all propositions have probabilities

As we noted above, this follows from the fact that there is no set of
all sets

But even if you ignored that complication, there is a purely
probabilistic reason to think that not all propositions should have
probabilities

And again, this matters to philosophical applications that presuppose
all propositions have probabilities
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