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Preface

Draft for a book based on my (overly long) paper Gamified Decision Theory.




1 Introduction


1.1 Ten Features of a Good Decision Theory

Textbook versions of game theory embed a distinctive approach to decision theory. That theory isn’t always made explicit, and it isn’t always clear how it handles some cases. But we can extract an interesting and plausible theory, which I’ll call Gamified Decision Theory (GDT), from these textbooks. I will focus on these ten characteristics of GDT, with one chapter to come on each.


	Idealised: GDT is a theory of what ideal deciders do.

	Expectationist: The ideal decider prefers getting more expected value to getting less.

	Causal: GDT is a version of Causal Decision Theory (CDT).

	Allows Mixtures: The ideal decider can perform a probabilistic mixture of any acts they can perform.

	Ratificationist: The ideal decider endorses the decisions they make.

	Dual Mandate: In a dynamic choice, the ideal decider will follow a plan that’s permissible, and take choices at every stage that are permissible.

	Indecisive: GDT sometimes says that multiple options are permissible, and they are not equally good.

	Selection: The aim of decision theory is to generate a function from possible choices to choice-worthy options, not to generate a preference ordering over the options.

	Substantive Probability: The ideal decider has rational credences.

	Weak Dominance, Once; The ideal decider will not choose weakly dominated options, but they may choose options that would not survive iterated deletion of weakly dominated strategies.



This is not going to be a work of exegesis, poring over game theory texts to show that they really do endorse all ten of these. In fact it wouldn’t take much work to show that they endorse 1-5, so the work wouldn’t be worth doing. And while some textbooks endorse 9 and 10, it would take a lot more investigative work than I’m going to do here to show that anything like a majority of them do. It would be interesting, but not obviously a philosophical question, to see what proportion endorse 6, 7 or 8. But I’m going to set those interpretative questions aside.

What I do want to argue is that you can find some support for all of these in some game theory textbooks, and that combined they produce a plausible decision theory. While the textbooks don’t all agree, for simplicity I’m going to focus on one book: Giacomo Bonanno’s Game Theory (Bonanno, 2018). This book has two important virtues: it is philosophically deep, and it is available for free. It isn’t hard to find a game theory text with one or other of these virtues, but few have both. So it will be our primary guide in what follows, along with some primary sources (most of which are referenced in that book).



1.2 Demons

A lot of contemporary philosophical decision theory revolves around what to do if there is a certain kind of demon around. Following Nozick (n.d.), such a demon is typically taken to be arbitrarily good at predicting what a human deliberator will do. I’ll call our arbitrary deliberator Chooser, and a typical demon Demon. Whenever X is a choice Chooser can make, I’ll use PX to mean that Demon predicts Chooser chooses X. It’s not so common to have problems where there are two such demons around, but I’ll make heavy use of them, and in such cases I’ll be clear about whether PX means that the first or the second demon predicted that Chooser will do X. These are predictions, and we assume that causation runs from past to future, so what Chooser does has no causal impact on what Demon predicts.

I’m squeamish about assigning probability 1 to predictions that are causally isolated from the thing being predicted; I have reductionist enough views about causation to think that if a prediction is correct with probability 1, that raises questions about whether causation does really run from past to future in this case. So I prefer to say that Demon is correct with a probability close enough to 1 that it doesn’t matter for the purposes of the problem being analysed. But this squeamishness, and the associated reductionism about causation, is not part of GDT. If you’re happy with having causally isolated demons who are correct with probability 1, everything else I say should be acceptable. Indeed, some of the reasoning goes through even more smoothly with perfectly accurate, but causally isolated, demons.

A generic binary choice problem involving Chooser and Demon can be depicted by Table 1.1.




Table 1.1: The generic demonic decision problem.





	
	PA
	PB





	A
	x
	y



	B
	z
	w










Chooser selects A or B, Demon predicts the choice, and there are four possible outcomes. Slightly more perspicuously, it can also be depicted by Figure 1.1. In this figure we start at the open circle (at the top of the tree), then move down, with the label showing who makes the choice. The dashed lines around the two nodes on the middle level mean that when we get to those nodes, Chooser knows we are at one of these two, but doesn’t know which one. In game-theoretic terms, the nodes are part of a common information set. I’ll have much more to say about these starting in Chapter 7.










Figure 1.1: Tree Diagram of the generic demonic decision problem.








I’ve written variables here where the outcomes go. These are going to be replaced with numbers in any example here. That is, I’ll assume that the value of outcomes can be measured numerically, with greater numbers being better. I’ll come back to this assumption briefly in Chapter 2, and more substantively in Chapter 3.

Following Nozick (n.d.), the most common problem that people discuss involving Demon is what Nozick dubbed “Newcomb’s Problem”, after the physicist who suggested the problem to him. A Newcomb problem is an instance of Table 1.1 satisfying the following constraints.


	z > x

	w > y

	x >> w



The standard example uses (more or less) the values in Table 1.2, but all that really matters are the three inequalities above.




Table 1.2: Newcomb’s Problem.





	
	PA
	PB





	A
	1000
	0



	B
	1001
	1










Option A and B are typically called ‘one-boxing’ and ‘two-boxing’ respectively, because they involve selecting either one or two boxes in the vignette Nozick gives to go along with the story. But what really matters is the schematic form, not the details of the physical setup.

Nozick distinguishes two approaches to this problem you might take. He doesn’t use the following terms, but they quickly became identified as Evidential Decision Theory, and Causal Decision Theory. Evidential Decision Theory (EDT) says that one should first assign values to each option using the following formulae. I’ll just give the formulae for the case where there are two states of the world, PA and PB, but it should be clear how to generalise this to the case where there are m possible states. When X is a choice and Y a state, I’ll use V(XY) to mean the value of choosing X in state Y. So for example in Newcomb’s Problem, V(BPA) = 1001; if Chooser selects B and Demon predicts A, Chooser’s payout is 1001. And I’ll use Pr(Y | X) to mean the probability of being in state Y conditional on choosing X. Using this terminology, EDT says that the value of the choices is:




	V(A) = V(APA) · Pr(PA | A) + V(APB) · Pr(PB | A)



	V(B) = V(BPA) · Pr(PA | B) + V(BPB) · Pr(PB | B)





So in Newcomb’s Problem, if Demon is, say, 90% reliable, we have:




	V(A) = 1000 · 0.9 + 0 · 0.1 = 900



	V(B) = 1001 · 0.1 + 1 · 0.9 = 101





Then EDT says that higher valued options are better, so A is better than B, since 900 > 101. And if Demon is even more reliable than 90%, that gap just grows further.

Causal Decision Theory (CDT), on the other hand, is moved by the following argument. Whatever Demon has predicted, Chooser is better off choosing B than A. That, says CDT, settles things; Chooser should take option B. I think this is right; Chooser should choose B, and they should do so for this reason. But note that this is not anything like a complete theory of choice. Two people could agree with this little argument and have any number of different views about problems that not so easily disposed of. In this book, especially in Chapter 8, I’ll spend a lot of time on problems like Table 1.3.




Table 1.3: The Stag Decision.1





	
	PA
	PB





	A
	6
	0



	B
	5
	2










It turns out that among people who endorse the little argument for choosing B in Table 1.2, there are at least four distinct views about what to do in Stag Decision.


	Frank Arntzenius (2008) and Johan E. Gustafsson (2011) recommend Choosing A.

	Ralph Wedgwood (2013), Dmitri Gallow (2020), Abelard Podgorski (2022), and David Barnett (2022) recommend choosing B.

	James Joyce (2012) says that what Chooser should do is a function of Chooser’s probability distribution over their choices prior to deliberating about what to do.

	Jack Spencer (2021) and Melissa Fusco (n.d.) say that Chooser can rationally take either option.



I’m going to side with option 4. Though note that Spencer and Fusco disagree about what Chooser should do in several other cases. Most notably, they disagree in cases that are like Stag Decision but with the payouts inverted. In those cases, GDT is going to side with Fusco against Spencer.

It’s not obvious, either from the description of the problems or the history of the philosophical discussion, which if any of these theories should get the name “Causal Decision Theory”. Some people write as if Joyce’s view is the unique one that should get that name; indeed many of the people I’ve listed above describe themselves as critics of CDT who are offering an alternative to it. I think that’s not the most helpful way to classify views. All of them accept that in Newcomb’s Problem, Chooser should choose option B, and that Chooser should choose it because Chooser can’t make a causal difference to whether PA or PB happens, and either way, B is better than A. That’s the core idea behind Causal Decision Theory.

A decision theory should say what to do not just in one problem, but across a family of problems. It should say what to do in Stag Decision for example. As I’m using the term, Causal Decision Theory, as such, is neutral between the four possible approaches to Stag Decision So it isn’t a theory. Rather, it is a family of theories, that all agree about what to do in Newcomb’s Problem, and about why to do it, but disagree in different problems.

So as I’m using the term, Causal Decision Theory is not a theory. That might be surprising, since it has the word ‘Theory’ in the name. But we’re used to things like the United States of America which includes parts that are neither States nor in America (e.g., Guam). We can live with Causal Decision Theory not being a theory, and instead being a family that agree about what to do, and why to do it, in Newcomb’s Problem. The bulk of this book will be an in house dispute between causal decision theories, though I’ll spend some time objecting to EDT, and also some time objecting to other theories that reject both CDT and EDT.2



1.3 Gamified Decision Theory

The actual theory I will defend, GDT, is a version of what’s sometimes called causal ratificationism.

The ‘causal’ in causal ratificationism means that there are constraints on the proper formulation of a decision problem. EDT says it does not matter how we divide the world into states; decision theory should give the same verdict. If we rewrite Newcomb’s Problem with the states being that Demon predicted correctly, and that Demon predicted incorrectly, EDT gives the same recommendation, for essentially the same reason. GDT, like all causal theories, rejects this. The correct formulation of a decision problem requires that the states, like PA and PB, be causally independent of the choices that Chooser makes. I have a fairly strong version of this independence constraint, which I’ll discuss more in Chapter 4.

The ‘ratificationism’ in causal ratificationism means that Chooser will ratify their choice once they make it, i.e., that Chooser will not regret a rational choice as soon as it is made. Formally, this means that Chooser will only choose A in cases like Table 1.1 if the following inequality holds.3







	V(APA) · PrA(PA) + V(APB) · PrA(PB) ≥ V(BPA) · PrA(PA) + V(BPB) · PrA(PB)





By PrA I mean the rational probabilities that Chooser has after choosing A. If there is more than one rational probability that Chooser could have, all that matters is that the inequality hold for one such probability function.4 In somewhat technical English, what this inequality says is that once A is chosen, the expected value of choosing A is at least as great as the expected value of having chosen B. That’s what I mean by ratifiability; once Chooser selects A, they think it was for the best (or at least equal best) that they chose it.

I’m far from the first to endorse ratifiability as a constraint on decisions. It’s defended by William Harper (1986), in a paper that was a central inspiration for this project, both because of its conclusions, and because of the way it connected decision theory to game theory. I’ll talk about the ratifiability constraint much more in Chapter 6.

GDT, as I’m defining it, has three extra features beyond this causal ratification constraint, and I’ll end this chapter with a brief discussion of each of them.

GDT says that permissible choices are not weakly dominated. An option weakly dominates another if it could be better, and couldn’t be worse. So in Table 1.4, A is not a permissible choice because it is weakly dominated by B.




Table 1.4: An example of weak dominance.





	
	PA
	PB





	A
	2
	0



	B
	2
	1










Since B could be better than A, if Demon predicted B, and could not be worse than A, at worst they produce the same outcome if Demon predicts A, B weakly dominates A. And weakly dominated actions are not rational choices. So in this problem the only rational choice is B. This is not particularly intuitive, but I don’t think agreement with first pass intuition is a particularly strong constraint on decision theories, for reasons I’ll go over in Chapter 3. And I’ll have much more to say about weak dominance, and in particular why I reject an iterated version of the weak dominance constraint, in Chapter 11.

In dynamic choices, GDT says that Chooser must satisfy two constraints. First, the plan they make for what to do over time, what we’ll call a strategy5, must be a permissible choice of strategy. Second, at each point in time, they must choose an option that would be permissible were the dynamic choice problem to have started at that point, with that set of options. These two constraints, which I’ll discuss much more in Chapter 7, have some surprising consequences. Imagine that Chooser has the following two-stage problem. At stage 1, they can choose to Exit or Continue. If they Exit, they get 5. If they continue, they make a choice in the problem depicted in Table 1.5.6




Table 1.5: The second stage of a dynamic problem.





	
	PA
	PB





	A
	4
	4



	B
	0
	8










The plan of Continuing, then choosing A, is not a sensible plan. Chooser knows from the start that there is a plan which is guaranteed to be better, namely Exiting. If they Exit, they are guaranteed to get 5, if they Continue then choose A, they are guaranteed to get 4. So they may not Continue then choose A. But this does not mean that they must Exit. They may Continue and choose B. Now here’s the surprising part. If they faced Table 1.5 as the first choice they have to make, they could choose B, but they also could choose A. In Table 1.5, A is ratifiable and not weakly dominated. So GDT is not a purely consequentialist decision theory. By that I mean that sometimes, choices that Chooser makes earlier in a dynamic choice situation constrain which choices are rational later in the game. A lot of versions of CDT do not specify how they are to be extended into theories of dynamic choice, but my impression is that many philosophers, and especially many philosophers who endorse CDT, do think decision theory should be purely consequentialist, and GDT disagrees with them on this point.

There are some decision theorists who agree with GDT that decisions should not be strictly consequentialist. These include the resolute theorists, in the sense of McClennen (1990), and the functional theorists, in the sense of Levinstein & Soares (2020). But GDT disagrees with them as well. Those theorists think that the only thing Chooser must do is choose a sensible plan, and then at each stage Chooser should just carry it out. In section Section 7.3 I’ll argue against the idea that the choice of a rational strategy always lines up with the choice of rational moves at each point in a dynamic choice problem.7 Then in section Section 7.4 I’ll argue against the view that choosing a rational strategy suffices for rational play in a dynamic choice problem. The upshot will be that GDT requires that every action be sensible at the time it is taken, not just part of a sensible strategy, and that conflicts with most other theories that care about strategies.

Finally, my version of GDT says that what matters for rational choice is what probabilities over states are rational, not which probabilities Chooser happens to endorse. GDT is a theory of rational choice simpliciter, not a theory of rational choice given possibly irrational beliefs. I’ll have more to say about this in Chapter 10.



1.4 Dynamic Arguments for Static Theories

The full argument for GDT takes the bulk of the book to set out. There is, however, a much shorter argument for something in the ballpark of GDT, and certainly for something distinct from most existing views in the philosophical literature, that starts with three principles about dynamic choice. This is not because GDT is itself a dynamic theory; in the first instance it is a version of causal ratificationism, a static theory. The point is that only certain static theories are even capable of being extended into decent theories of dynamic choice, and this is a tighter constraint than has always been appreciated.

The first of the three principles concerns the following situation.8 If p is false, Chooser’s payouts are (causally) independent of anything they do. If p is true, Chooser will have to make a single choice. But if they do, they won’t learn anything relevant other than that p is true before choosing. In game theoretic terms, the tree of the game Chooser is playing has just one node where they act, and it’s a singleton information set. These are fairly tight constraints; most dynamic choice situations involve either multiple possible choices, or multiple things that one could learn before a choice. We’re just interested in this very special case.

The principle I rely on is that in such a situation, it doesn’t matter whether Chooser is asked to choose before or after learning that p is true. That is, if they are asked to come up with a strategy, which in this case is just a plan for what to do if p is true, that’s just the same as being told that p is true, and being asked to come up with a move. Slightly more informally, the following two questions should get the same answer because in some deep sense they are the same question:


	If p is true, what do you want to do?

	Hey, p is true. What do you want to do?



This principle is violated by, among others, the theory of choice that Lara Buchak (2013) defends.9 Imagine that Suzy has two things she is planning to give away. The first is a lottery ticket that has a 50% chance of being worth $4, and a 50% chance of being worth nothing. The second is a dollar. She is going to give one to Billy and the other to Teddy. She comes up with the following somewhat convoluted plan to decide what to do. She’s going to flip a fair coin. If it lands heads, Billy will get the ticket. If it lands tails, Billy will get a choice of the ticket or the dollar. Billy’s risk-function10 r is r(p) = p2. And money has an ever-so-slightly declining marginal utility for Billy.11 Then if Billy follows Buchak’s theory, he’ll say the following things. Ask him before the coin is flipped what he would like if it lands tails, and he’ll say the ticket. Tell him the coin has landed tails, and ask him what he’d like, and he’ll say the dollar. That looks inconsistent, even incoherent, to me, and it’s enough reason for me to look for a separate theory.12

The second principle says that in a dynamic choice situation, every choice that a rational chooser makes must make sense in purely forward-looking terms. That is to say, every choice must be one that could be rationally made if it were the first choice being made in a different, simpler, dynamic choice. It’s easiest to see what this rules out by looking at an example. This is going to be a version of Newcomb’s Problem without any suspense, i.e., with the Chooser being allowed to look inside the boxes.

Chooser is going to be presented with two boxes, one red and one blue. The boxes will be open, so Chooser will see what’s in them. Chooser will be allowed to take the contents of one of them, at their choice. There is a Demon who predicted Chooser’s choice. If Demon predicted Chooser would choose the red box, they put $10 in the red box, and $11 in the blue box. If Demon predicted Chooser would choose the blue box, they put $0 in the red box, and $1 in the blue box. The second principle says that in this case, Chooser must take the blue box. What it rules out is the following reasoning, which is endorsed by, e.g., Levinstein & Soares (2020). The optimal strategy is to plan to take the red box, since on average that gets $10 rather than $1. Then when the boxes are opened, what Chooser should do is carry out the optimal strategy, i.e., take the red box. The second principle says that reasoning is illegitimate. If Chooser is going to take the red box now, they must be capable of defending that decision using purely forward-looking considerations.13 And that’s impossible to do, since there is quite clearly one more dollar in the blue box. The only consideration in favour of the red box is backward-looking; it correlates with getting a more favourable distribution of funds to the boxes.

The third principle is a converse of sorts to the third. It says that at the end of a series of choices, a rational chooser must be able to defend why they made that series of choices rather than some alternative series.14 To see why this matters, it helps to use a version of GDT that I used to believe was correct, before I considered what it said about examples like Table 1.5. This theory says that all that matters for choice at a time is that one do something ratifiable (and not weakly dominated), and that all that matters for dynamic choice is that one equates the possibility of reaching a future choice with a lottery ticket whose payouts are the payouts of that later choice, with the probabilities of each payout of the ticket the same as the probability one gives to the payouts of the later choice.

Start with this theory, and think about the following kind of Chooser. They think that if they don’t exit, and instead choose to play Table 1.5, it’s just as likely that they’ll choose A as B. After all, both are rational. So playing the game has an expected return of 6, while exiting has a guaranteed return of 5, so they play the game. And then they play A, and they get 4. This seems irrational; they could have got 5. The third principle says that it is irrational. The strategy, play the game then choose A, is not a strategy one could defend as a whole. The alternative strategy of exiting15 strictly dominates it. According to GDT, a series of choices, each rational in themselves, can be collectively irrational. And that’s what is distinctive about the third principle. In game-theoretic terms, it says that one’s sequence of choices (and dispositions to choose in unreached nodes of the game-tree) must be defensible if one was choosing a strategy. And this turns out to be a non-trivial constraint.

None of these three principles will strike people working in decision theory as particularly novel. I’ve framed them in terms of choice-worthiness rather than preference, which makes them a bit weaker and hence more plausible. And as the book goes on I’ll offer some somewhat new arguments for them. But none of them alone are particularly innovative. What is, I think, more innovative, is putting them together. While many theories exist that satisfy at least one of them, or even satisfy some pair of them, as far as I can tell, only versions of causal ratificationism look capable of satisfying all three.

If there is a single master argument of the book, it is that the right decision theory complies with these three principles, only causal ratificationism complies with these three principles, so the correct decision theory is a form of causal ratificationism. I’ll have much more to say about the principles, and about the particular form of causal ratificationism I prefer. That argument, however, is the simplest guide to where we’re going.







1. I say much more about why the problem has this label in Appendix A.



2. The most notable of these will be the Functional Decision Theory of Levinstein & Soares (2020), and the non-expectationist theories of Quiggin (1982) and Buchak (2013).



3. In general, the sum on each side of the inequality ranges over all possible states, so if there are more than two states, there will be more than two summands on either side. And A must be ratified compared to all alternatives, so if there are more than two options, this inequality must hold if you replace B with C, D, or any other choice.



4. If there is more than one alternative to A, and more than one rational probability function, the rule is that there is some probability function such that A does better than every possible alternative, if we put that function into the inequality above. It’s not enough that for each alternative there is some probability function that judges A to be better than the alternative.



5. A strategy in this sense must plan for what to do in every possibility, including possible choices ruled out by earlier choices.



6. In this problem, the Demon makes a prediction after Chooser opts to Continue, but this prediction is only revealed after Chooser selects A or B.



7. One might have expected it would be easy to generate examples where this fails in GDT, by simply translating the examples of games involving incredible threats (Bonanno, 2018: 86) into demonic decision problems. It turns out to be harder than one might have expected, or at least than I originally expected, to come up with such a case where (a) one player is Demon, and (b) the ‘threat’ strategy is not weakly dominated. And in Chapter 11 I’m going to follow Stalnaker (1999) in ruling out weakly dominated strategies. That explains some of the complications in the example to follow.



8. In Chapter 8 I’m going to call this the Single Choice Principle, because it concerns dynamic choice situations where Chooser has only one possible choice to make.



9. Buchak offers a very clear outline of her view in her (2017).



10. On the role of risk-functions in Buchak’s theory, see (Buchak, 2017: 2366).



11. The example is not sensitive to the details on this point, but to make it concrete, imagine that Billy’s utility from wealth w is log(w), and he currently has a few thousand dollars.



12. In Appendix E I go over a more general version of this example, showing that unless the risk-function is the identity function, such a problem can arise. If the risk-function is the identity function, Buchak’s theory does not disagree with GDT.



13. This is consistent with what I said about about GDT not being a purely consequentialist theory. There I said that non-consequentialist constraints can rule out something makes sense on purely consequentialist grounds. Here I’m saying that only things that are allowed by consequentialism are allowed full stop.



14. There are a bunch of caveats needed on this, and I go over them more in Chapter 7. For now, all that matters is that the example I’ll use does not violate any of the needed caveats.



15. To be more precise, there are multiple exit strategies, which differ in what one is disposed to do if one doesn’t exit. This level of precision will occasionally matter, but not that often.





2 Idealised


2.1 Introducing Ideal Theory

Game theorists, like philosophical decision theorists, are doing ideal theory. To see that they are doing ideal theory, compare what they say about two problems: Salesman and Basketball. The first is a version of what Julia Robinson dubbed the ‘travelling salesman’ problem.1


Salesman

Chooser is given the straight line distance between each pair of cities from the 257 represented on the map in Figure 2.1. Using this information, Chooser has to find as short a path as possible that goes through all 257 cities and returns to the first one. The longer a path Chooser selects, the worse things will be for Chooser.












Figure 2.1: The 257 cities that must be visited in the Salesman problem.








Since there are 256! possible paths, and 256! ≈ 10727, Chooser has a few options here.2 Game theorists, and philosophical decision theorists, start with the assumption that the people in their models can solve these problems in zero time and at zero cost. Or, at the very least, that the people can emulate someone who solves these problems in zero time and at zero cost. That’s not even approximately true for any actual person without technological assistance. Even with knowledge of the problem and a good computer, there are not that many actual people who you could properly model as being able to solve it in zero time and at zero cost.

The question of how to think about people who do have to spend time and resources to solve a problem like this is an interesting one. We might call that problem one in non-ideal decision theory.3 I won’t say much about non-ideal decision theory in the body of this book, though I’ll come back to it in Appendix B. What I mostly want to do now is use Salesman to say something about what the difference between ideal and non-ideal theory is. And that difference is brought up vividly by the following problem.


Basketball

Chooser is at a casino, and a basketball game is about to start. Chooser knows that basketball games don’t have draws or ties; one side will win. And Chooser knows the teams are equally balanced; each team is 50% likely to win. Chooser has three options. They can bet on the Home team to win, bet on the Away team to win, or Pass, and not bet. If they bet, they win $100 if the team they bet on wins, and lose $110 if that team loses. If they Pass, they neither gain nor lose anything.



Ideal decision theory says that in Basketball, Chooser should Pass. That’s not the optimal outcome for Chooser. The optimal outcome is that they bet on the winning team. But since they don’t know who that is, and either bet will, on average, lose them money, they should Pass rather than bet on Home or Away. We could have a theory that just evaluated the possible outcomes in any decision. I’ll call this Outcome Evaluation Theory. Contrast this with two other theories. Game theory says that the ideal agent chooses the shortest route, whatever it is, in Salesman and does not bet in Basketball. If an ordinary reasonable person was advising a friend facing these two problems, they would give the same advice as the game theorist about Basketball, but in Salesman they would not simply say Choose the shortest path!, since that’s useless advice. Rather they would suggest something about how to solve the problem, possibly by looking up strategies.

So we have three theories on the table: Outcome Evaluation Theory; the game theory approach, which I’ll call Ideal Decision Theory; and the ordinary reasonable person approach, which I’ll call Non-Ideal Decision Theory. We can distinguish these three theories by what they say to do in two examples introduced so far: Salesman and Basketball.




Table 2.1: How three kinds of theories handle two problems.





	Theory
	Salesman
	Basketball





	Outcome Evaluation
	Shortest route
	Bet on winner



	Ideal Decision
	Shortest route
	Pass



	Non-Ideal Decision
	Study optimization
	Pass










Game theory agrees with the middle row. GDT, the theory I’m developing in this book, does so too. And so do almost all decision theorists working in philosophy.4 So in trying to convince philosophers to adopt GDT, I’m not asking them to change their view on this point. But still, this is odd. What is the benefit of a theory of decision that does not produce the best outcomes, and does not produce useful, reasonable advice?

We could say that if Chooser were ideal, they would agree with Ideal Decision Theory.5 But why we should care about what would have if Chooser were ideal, since Chooser is not in fact ideal? One might think that knowing what the ideal is gives Chooser something to aim for. Even if Chooser is not ideal, they can try to be closer to the ideal. The problem is that trying to be more like the ideal will make things worse. The ideal agent will announce the best answer they have after spending no time calculating the solution to Salesman, and resembling the ideal agent in that respect will make Chooser worse.6 And there is a separate problem. Why say it is ideal to make a choice in Basketball that Chooser knows will lead to a sub-optimal outcome? We can make progress on both these problems, what it means to say something is ideal, and why we should care about the ideal, but stepping back and asking what we even mean by ‘ideal’, and ‘idealisation’.

In philosophy, it turns out we have two very different uses of the term ‘idealisation’. One is the kind of idealisation we see in, for example, Ideal Observer theories in ethics. The other is the kind of idealisation we see in, for example, Ideal Gas models in chemistry. It’s important to not confuse the two. Think about the volumeless, infinitely dense, molecules in an Ideal Gas model. To say that this is an idealised model is not to say that having volume, taking up space, is an imperfection. The point is not to tell molecules what the perfect size is. (“The only good molecule is a volumeless molecule.”) Nor is it to tell them that they should approximate the ideal. (“Smaller the better, fellas.”) It’s to say that for some predictive and explanatory purposes, molecules behave no differently to how they would behave if they took up no space.7

The best way to understand game theorists, and most philosophical decision theorists, is that they are using idealisations in this latter sense. The ideal choosers of decision theory are not like the Ideal Observers in ethics, but like the Ideal Gases. The point of the theory is to say how things go in a simplified version of the case, and then argue that this is useful for predictive and explanatory purposes because, at least some of the time, the simplifications don’t make a difference.



2.2 Uses of Ideal Theory

Still, this approach raises two pressing questions. One is why we should be interested in a model that is so idealised. The other is why we don’t idealise even further, idealising away from informational limitations as well as computational ones.8

All social sciences use idealised models of some kind or other. The fact that real humans can’t solve problems like Salesman, but the modelled humans can, isn’t in itself a problem. Modelled humans are always different in some respects to real humans. It is only a problem if the differences matter. For example, if you are trying to model when humans fail at maximisation problems, don’t use a model that idealises away from computational limitations.

The real challenge is that some idealisations are useless. If all we end up saying is that when it’s more likely to rain, more people take umbrellas, we don’t need books full of math to say that. Here’s how Keynes puts the complaint, in a closely related context.


But this long run is a misleading guide to current affairs. In the long run we are all dead. Economists set themselves too easy, too useless a task if in tempestuous seasons they can only tell us that when the storm is long past the ocean will be flat again. (Keynes, 1923: 80, emphasis in original)



Don’t focus on the temporal connotations of Keynes’s terminology of ‘long run’. What’s characteristic of his long run is not that it takes place in the distant future. What is characteristic of it instead is that it takes place in a world where some sources of interference are absent. It’s a world where we sail but there are no storms. It’s a study where we abstract away from storms and other unfortunate complications. And that’s what’s characteristic of Ideal Decision Theory. We know that people cannot easily solve hard arithmetic problems, but we abstract away from that fact. Does this leave the resulting theory “easy and useless”?

To see that it’s not “easy”, it simply suffices to take a casual glance at any economics journal. But what about Keynes’s suggestion that it is “useless”? It turns out there are some surprising results that we need the details of something like GDT to generate. One nice case of this is the discussion of Gulf of Mexico oil leases in Wilson (1967).9 Another example of this working is George Akerlof’s discussion of the used car market Akerlof (1970). In the twentieth century, it was common for lightly used cars to sell at a massive discount to new cars. There was no good explanation for this, and it was often put down to a brute preference for new cars. What Akerlof showed was that a model where (a) new cars varied substantially in quality, and (b) in the used car market, buyers had less information about the car than sellers, you could get a discount similar to what you saw in real life even if the buyers had no special preference for new cars. Rather, buyers had a preference for good cars, and took the fact that a car was for resale within months of being first bought to be evidence that it was badly made. It was important for Akerlof’s explanatory purposes that he could show that people were being rational, and this required that he have a decision theory that they followed. In fact what he used was something like GDT. We now have excellent evidence that something like his model was correct. As the variation in quality of new cars has declined, and the information available to buyers of used cars has risen, the used car discount has just about vanished. (In fact it went negative during the COVID-19 pandemic, for reasons I don’t at all understand.)

Here’s an even simpler surprising prediction that you need something like GDT to get, and which is relevant to some debates in philosophical decision theory.10 Imagine Row and Column are playing rock-paper-scissors. A bystander, C, says that he really likes seeing rock beat scissors, so he will pay whoever wins by playing rock $1. Assuming that Row and Column have no ability to collude, the effect of this will to add c to the value of playing Rock against Scissors, where c is the value of the dollar compared to the value of winning the game. This changes the game they are playing from Table 2.2 (a) to Table 2.2 (b).




Table 2.2: Two versions of Rock-Paper-Scissors







(a) Original game





	
	Rock
	Paper
	Scissors



	Rock
	0,0
	-1,1
	1,-1



	Paper
	1,-1
	0,0
	-1,1



	Scissors
	-1,1
	1,-1
	0,0
















(b) Modified game





	
	Rock
	Paper
	Scissors



	Rock
	0,0
	-1,1
	1+c,-1



	Paper
	1,-1
	0,0
	-1,1



	Scissors
	-1,1+c
	1,-1
	0,0



















The surprising prediction is that this will decrease the frequency with which the bystander gets their way. The incentive will not make either party play rock more often, they will still play it one third of the time, but the frequency of scissors will decrease, so the rock smash outcome will be less frequent. Moreover, the bigger the incentive, the larger this increase will be11. Simple rules like “When behaviour is rewarded, it happens more often” don’t always work in strategic settings, and it takes some care to tell when they do work.

The point of decision theory is not to advise people on what to do in Rock-Paper-Scissors, or in Salesman. In each case, it would give bad advice. Really you should try to read your opponent’s body shape for clues in Rock-Paper-Scissors, and find some good software in Salesman. You won’t find either of those bits of advice in a game theory, or decision theory, text. Rather, the point is be part of explanations like why there was such a large discount on used cars in the 20th century, and why the bystander’s gambit won’t work in my modified version of Rock-Paper-Scissors. David Lewis gives a similar account of the purpose of decision theory in a letter to Hugh Mellor. The context of the letter, like the context of this section, is a discussion of why idealisations are useful in decision theory. Lewis writes,


We’re describing (one aspect of) what an ideally rational agent would do, and remarking that somehow we manage to approximate this, and perhaps – I’d play this down – advising people to approximate it a bit better if they can. (Lewis, 2020: 432)





2.3 Why This Idealisation

Still, there are a lot of ways to idealise away from the details of individual humans. Why do we delete the differences from rationality, and not the differences from full-informedness, or the differences from something that lacks normative significance? One simple answer is that people have used this idealisation and it has (to some extent) worked. But there is a little more to say.

Take some generalisation about human choosers that isn’t particularly rational, is true in most but not all cases, and which it would simplify our description of various cases to say it holds in all cases. Why don’t we use the idealisation that says it does in fact hold in all cases? The answer here depends a bit on the ‘we’. Some generalisations about less than ideally rational behavior are useful in empirical studies of consumer choice.12 But there is a reason that philosophers and more theoretical economists have focussed on rational idealisations. The thought is that a lot of deviations from rationality are short-cuts that are sensible to use when the stakes are low. But in high-stakes situations, humans will more closely approximate ideally rational agents. (This might be coupled with the suggestion that over time they will do this better, simply because the ones who more closely approximate the rational choice will increase their market share.) And getting correct predictions and explanations in high-stakes cases might be particularly important in understanding society and the economy. So while non-rational idealisations might be crucially important in understanding store design (e.g., why supermarkets have produce at the entrance), rational idealisations are needed for understanding the nature of stock markets and business investment.

That reasoning looks like it might over-generate. In high-stakes cases, people are not only more careful with their decision making process, they are more careful about acquiring information before they decide. If our focus is high-stakes decision making, and I think it has to be to motivate rational idealisations, why don’t we also abstract away from informational limitations of the deciders? After all, the decider will try to remove those limitations before deciding in these high-stakes cases. The answer is that in some cases, and these are the cases that decision theory is most useful in explaining, there are in principle reasons why the decider can’t do anything about certain informational limitations. The information might be a fact about the result of a chance-like process that is unknowable either in principle, or in any practical way. Or there might be someone else who has just as much incentive to keep the information hidden as the decider has to seek it out. The latter is what happens when someone is selling a lemon, for example. I don’t have anything like a proof of this, but I suspect that most uses of game theory or decision theory to explain real-world phenomena will fall into one or other of these categories: there are relevant facts that the decider can’t know, either because they have to decide before decisive evidence is revealed, or because someone just as well resourced as them is determined to prevent them getting the information.



2.4 Two Bonus Uses

There are two other advantages to using the particular idealisation that game theorists and decision theorists have settled on, i.e., idealise away from computational but not informational limitations. The first can be seen from this famous quote from Frank Knight, an early proponent of the view of idealisations in decision theory that I’m endorsing here.


It is evident that the rational thing to do is to be irrational, where deliberation and estimation cost more than they are worth. That this is very often true, and that men still oftener (perhaps) behave as if it were, does not vitiate economic reasoning to the extent that might be supposed. For these irrationalities (whether rational or irrational!) tend to offset each other. The applicability of the general “theory” of conduct to a particular individual in a particular case is likely to give results bordering on the grotesque, but en masse and in the long run it is not so. The market behaves as if men were wont to calculate with the utmost precision in making their choices. We live largely, of necessity, by rule and blindly; but the results approximate rationality fairly well on an average. (Knight, 1921: 67n1)



I don’t agree with everything Knight says here; I think he’s much too quick to assume that deviations from rationality will “offset”.13 But that’s something to be worked out on a case-by-case basis. We should not presuppose in advance either that the imperfections be irrelevant or that they will be decisive.

Despite that, I quoted Knight here because there is an important point to I do agree with. If we don’t act by first drawing Marshallian curves and solving optimisation problems, how do we act? As Knight says, we typically act “by rule”. Our lives are governed, on day-by-day, minute-by-minute basis, by a series of rules we have internalised for how to act in various situations. The rules will typically have some kind of hierarchical structure - do this in this situation unless a particular exception arises, in which case do this other thing, unless of course a further exception arises, in which case, and so on. And the benefit of adopting rules with this structure is that they, typically, produce a good trade off between results and cognitive effort.

One useful role for idealised decision theory is in the testing and generation of these rules. We don’t expect people who have to make split-second decisions to calculate expected utilities. But we can expect them to learn some simple heuristics, and we can expect theorists to use ideal decision theory to test whether those heuristics are right, or whether some other simple heuristic would be better. This kind of approach is very useful in sports, where athletes have to make decisions very fast, and there is enough repetition for theorists to calculate expected utilities with some precision. But it can be used in other parts of life, and it is a useful role for idealised decision theory alongside its roles in prediction and explanation.

The other benefit of idealised decision theory is that it has turned out to be theoretically fruitful. This has included fruits that I, at least, would never have expected. It turns out that sometimes one gets a powerful kind of explanation from very carefully working out the ideal theory, and then relaxing one of the components of the idealisation. At a very high level of abstraction, that’s what happened with the Eyster and Rabin’s development of the notion of cursed equilibrium (Eyster & Rabin, 2005). The explanations they give for certain kinds of behavior in auctions are completely different from anything I’d have expected, but they seem to do empirically fairly well.14 Their models have people acting as if they have solved very complex equations, but have ignored simple facts, notably that other people may know more than they do. A priori, this is not very plausible. But if it fits the data, and it seems to, it is worth taking seriously. And while it was logically possible to develop a model like cursed equilibrium without first developing an ideal model and then relaxing it, that’s not in fact how it was developed. In fact the development of certain kinds of ideal models15 was theoretically fruitful in the understanding of very non-ideal behavior.



2.5 Summary

So our topic is idealised decision theory. In practice, that means the following things. The chooser can distinguish any two possibilities that are relevant to their decision, there is no unawareness in that sense, and they know when two propositions are necessarily equivalent. They can perform any calculation necessary to making their decision at zero cost. They have perfect recall. They don’t incur deliberation costs; in particular, thinking about the downsides of an option, or the upsides of an alternative, does not reduce the utility of ultimately taking that option, as it does for many humans. They know what options they can perform, and what options they can’t perform, and they know they’ll have that knowledge whatever choices they face. I’ll argue in Chapter 5 that it means they can play mixed strategies. Finally, I’ll assume it means they have numerical credences and utilities. I’m not sure this should be part of the same idealisation, but it simplifies the discussion, and it is arguable that non-numerical credences and utilities come from the same kind of unawareness that we’re assuming away. (Grant, Ani, & Quiggin, 2021)

So the problems our choosers face look like this. There are some possible states of the world, and possible choices. The chooser knows the value to them of each state-choice pair. (In Chapter 3 I’ll say more about this value.) The states are, and are known to be, causally independent of the choices. But the states might not be probabilistically independent of the choices. Instead, we’ll assume that the chooser has a (reasonable) value for Pr(s | c), where s is any one of the states, and c is any one of the choices. The question is what they will do, given all this information.







1. The dubbing is in Robinson (1949). For a thorough history of the problem, see Schrijver (2005). For an accessible history of the problem, which includes these references, see the wikipedia page on ‘Traveling Salesman Problem’.



2. The 257 cities are the cities in the lower 48 states from the 312 cities in North America that John Burkardt mapped in his dataset Cities, available at people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html.



3. I’m borrowing the term ‘non-ideal’ from work in political philosophy. See Valentini (2012) for a good survey of some relevant work, and Mills (2005) for an important critique of the centrality of ideal theory in political philosophy. Critics of ideal theory, such as Mills, and Sen (2006), argue that we shouldn’t base non-ideal theory on ideal theory. I’m going to agree, but my focus is primarily in the other direction. I’m going to argue that it isn’t a constraint on ideal theory that it is useful in constructing a non-ideal theory.



4. The exceptions are people working in ‘descriptive decision theory’ (Chandler, 2017). But that’s normally not taken to be a normative theory; it isn’t about what people should do in problems like Salesman, but what they actually do.



5. This claim isn’t obvious. Why should being ideal require computational perfection, but not informational perfection? I’ll have more to say about this in Section 2.3.



6. This is a special case of Lipsey and Lancaster’s Theory of the Second Best (Lipsey & Lancaster, 1956). If you don’t have control over every parameter, setting the parameters you do control to the ideal values is generally inadvisable.



7. I’m drawing here on work on the nature of idealisations by Michael Strevens (2008) and by Kevin Davey (2011).



8. John Conlisk (1996) stresses that explaining the asymmetry here is a big part of the challenge. That paper had a big influence in how I’m thinking about the problem, and several of the citations below are from it.



9. I learned about this paper from the excellent discussion of the case in Sutton (2000).



10. Bonanno (2018: 216) makes a somewhat similar point with the example of the drowning dog.



11. The proof is in Appendix C.



12. See Barta, Gurrea, & Flavián (2023) for a relatively recent example, picked more or less at random.



13. See Conlisk (1996) for many, many examples from both theory and practice where they do not.



14. And there are even more empirically successful theories that build on their work, such as in Fong, Lin, & Palfrey (2023) and Shani Cohen & Li (2023).



15. The ideal models they use, which involve the notion of Bayesian Perfect Equilibrium, are slightly more complicated than any model I’ll use in this book; they were not the simple models from the first day of decision theory class.





3 Expectationist

There is a strange split in contemporary decision theory. On the one hand, there are questions about the way to model attitudes to risk, largely organised around the challenge to orthodoxy from Quiggin (1982) and Buchak (2013). On the other hand, there are questions about what to do in cases where the states are causally but not probabilistically independent of one’s actions, with the central case being Newcomb’s Problem. The strange split is that these two literatures have almost nothing in common.1

This split might seem to make sense when one reflects that there is no logical difficulty in endorsing any prominent answer to one set of questions with any prominent answer to the other set. But things get more difficult quickly. For one thing, one answer to questions about risk, what I’ll call the expectationist answer, is universally assumed by people working on issues around Newcomb’s Problem. For another, the argument forms used in the two debates are similar, and that should affect how the two arguments go. 

Say that a normal decision problem is one where the states are probabilistically independent of the choices. A simple example is betting on a coin flip. In talking about normal decision problems I’ll normally label the states H, for Heads, or T for Tails. Unless otherwise stated coins are fair, so H and T are equiprobable. And say that an abnormal decision problem is simply one that isn’t normal. A simple example is where the states are predictions of an arbitrarily accurate predictor.

The view I call expectationism has two parts. First, it says that in normal decision problems, the rational agent maximises the expected value of something like the value of their action. So if the states are H and T, the expected value of a choice X is V(XH)Pr(H) + V(XT)Pr(T), and the expectationist says to choose the choice with the highest expected value.2 Second, it says that something like this expected value plays an important role in the theory of abnormal decision problems. What’s an important role is vague, so there are possible borderline cases. But in practice this doesn’t arise, at least in the philosophy literature. Everyone working on abnormal problems is an expectationist. Indeed, most work assumes without even saying it that the first clause of expectationism is correct. Everyone working on normal problems makes it clear which side they fall on, so there is no vagueness there. And every game theory text is expectationist. 

I’m going to mostly follow suit. So why am I belabouring this point? One small reason and one large reason. The small reason is that one of the arguments I’ll give concerning abnormal cases generalises to an argument for expectationism about normal cases. I go over the details of this in Appendix E. The other reason is dialectical.

Expectationism does a surprisingly bad job at matching untutored intuition about cases. In some important sense, it says that risk-aversion is irrational.3 But intuition says that risk-aversion is rational. To be sure, expectationism does have things to say here. There is something like risk-aversion which makes sense given the declining marginal utility of money.4 And, I think, expectationism can explain why risk-aversion seems rational to people who primarily think about bets in terms of goods with declining marginal value. But still, the expectationist is playing defence here. It seems intuitively like risk-aversion is rational, and as Allais (1953) showed, this implies that expectationism says unintuitive things about some fairly simple cases.

Given that, it is surprising how many expectationists rely on intuitions about cases when assessing the merits of different theories of decision in abnormal cases. It often seems, when reading this part of the literature, that philosophical decision theorists endorse the following argument schema.


	The correct decision theory is the one that best tracks intuitions about cases.

	The decision theory that best tracks intuitions about cases is T (the preferred theory of the person making the argument).

	Therefore, the correct decision theory is T.



If the philosopher is an expectationist, they can’t really endorse this argument. Premise 2 can’t possibly be true. No matter how well theory theory does at tracking intuitions about abnormal cases, a modified version of their theory that allows for risk-aversion will do an even better job, especially when normal cases are considered. And for that reason, they can’t really believe premise 1. After all, if premise 1 is true, then the correct decision theory for normal decision problems is not expectationist.

So this means that arguments like this one should not be used in decision theory. Of course, we can’t entirely depart from intuitions about cases. If our theory disagrees too much with common sense it starts becoming a theory of something else (Jackson, 1998, Ch. 2). The role of intuitions is like the drawing on a wanted poster. It’s not true that the criminal is the person who best resembles the drawing, but you should be very sceptical of a theory that the criminal looks nothing at all like the poster. Still, you should also be sceptical of a theory that the criminal is someone who lacks what we thought were necessary skills for committing the crime, even if the person who most resembles the poster lacks those skills. One aim of this book is to develop several plausible preconditions on a good theory of decision, most importantly the Single Choice Principle of Chapter 8, and argue that only GDT (or something like it) satisfies those preconditions. That’s more philosophically significant than whether GDT best tracks intuitions about cases.

If expectationism does not maximise agreement with intuition, why is it so popular? It is because there are several plausible principles that are consistent with expectationism, but which are not consistent with the best alternative, namely the Quiggin-Buchak theory. These include5:


	News is Valuable

	
It is never worse to have more information before making a decision, and it is typically better to have more information.



	Sure Thing

	
If A is better than B conditional on p being true, and A is better than B conditional on p being false, then A is better than B.



	Substitution of Indifferents

	
If Chooser is indifferent between A and B, then Chooser should be indifferent between any two gambles that have the same payouts in all but one possibility, and in that possibility one of them returns A, and the other returns B.



	Single Choice Principle

	
If in a dynamic choice situation, there is only one possible point where Chooser has to make a choice, the same options are permissible choices for Chooser whether they are choosing at that point, or at any earlier point in the tree.





These four principles suggest four arguments for expectationism. First, argue that either expectationism is true, or the Quiggin-Buchak theory is true. Second, argue that one of these principles is a plausible second premise. Then conclude, since the principle rules out the Quiggin-Buchak theory, that expectationism must be true.

It’s certainly not a requirement of any expectationist that they endorse all four of these arguments. It isn’t even a requirement that they endorse any of these four; they could have some other argument. But since expectationism is not the intuitive theory, it is a requirement that they endorse some argument or other, probably something like one of these, to the conclusion that expectationism is true.

This is harder than it looks. EDT, for example, rejects both News is Valuable and Sure Thing in Newcomb’s Problem. The news about what Demon has predicted is not, according to EDT, valuable. If Chooser learns what Demon predicted, they will (rationally) choose B, and get, in expectation, a worse return than if they had not learned this and chosen A. And choosing B is preferable conditional on either the Demon predicting, or not predicting, that Chooser will choose A. But A is preferable overall.

That said, it’s not like all versions of CDT endorse these principles either. There are a lot of intuitive counterexamples to News is Valuable. It’s good to avoid spoilers for movies or football matches. In asymmetric coordination games (such as Table A.9 in Appendix A), it’s bad to have it be conventional wisdom that you know what the other person will do. You’re sure not to get the best result that way. Das (2023) argues that even given expectationism, the argument for News is Valuable fails on externalist conceptions of evidence. There is more to say about each of these cases, but the problems for News is Valuable are substantial enough that it doesn’t seem like a good premise in an argument against a decision theory.

And, perhaps more surprisingly, there are versions of CDT that reject Sure Thing. Dmitri Gallow (n.d.) argues that any version of CDT which is ‘stable’ in his sense will reject it. I suspect the argument he gives can generalise to some theories that are not stable in his sense as well. GDT avoids his argument only by the expedient of not offering a preference ordering over alternatives; it just says which choices are choice-worthy, not which choices should and should not be preferred to others.6 So Sure Thing doesn’t look like a safe starting point either, even if something like it might turn out to be true.

Still, it isn’t a requirement that an expectationist theory endorse all of these principles. What is required is that they endorse some good argument for expectationism. And, once they’ve endorsed it, they endorse it consistently when they start discussing abnormal problems involving demons. Moreover, they can’t endorse any argument about demons that would imply, if endorsed consistently, that expectationism itself is false.

I think the best option for most philosophical decision theorists is to endorse something like Substitution of Indifferents. That’s the only plausible principle I can see that is consistent with most theories philosophers have offered for dealing with Newcomb-like cases, and which implies expectationism. In particular, it’s the onlyprinciple that’s consistent with Evidential Decision Theory (EDT), is plausible, and implies expectationism, so evidential decision theorists should definitely endorse it. That’s not to say I’m endorsing EDT; I’m just saying that the defender of EDT also needs to offer a defence of expectationism, and I think one starting with Substitution of Indifferents is their only good option.

Expectationism has a big practical advantage; it lets us treat the payouts in a game table as expected values, not any kind of final value.7 This is useful because it is very rare that a decision problem results in outcomes that have anything like final value. Often we are thinking about decision problems where the payouts are in dollars, or some other currency. That’s to say, we are often considering gambles whose payout is another gamble. Holding some currency is a bet against inflation; in general, the value of currency is typically highly uncertain.8 For the expectationist, this is not a serious theoretical difficulty. As long as a dollar, or a euro, or a peso, has an expected value, we can sensibly talk about decision problems with payouts in those currencies. Depending on just how the non-expectationist thinks about compound gambles, they might have a much harder time handling even simple money bets.9

So imagine we have a simple problem. Chooser must accept or decline a bet. If they decline the bet they get nothing. If they accept the bet they gain $1,000 if p is true, and lose $1,000 if p is false. According to the expectationist, this is a relatively easy problem. The theorist just needs to compare the marginal utility of gaining vs losing $1,000 with the probability of p. But on non-expectationist theories, things are more complicated. On those theories, it doesn’t just matter how valuable the extra $1,000 is, it also matters how that value is composed. Chooser might act very differently if the value of an extra $1,000 is a sure small gain in future consumption, as opposed to a 1 in 2 chance of a larger gain of future consumption, and a 1 in 2 chance that inflation will make the money worthless. The point is not that Chooser could not in principle be worried about inflation when choosing what bets to make. It’s rather that the non-expectationist theorist can’t first look at Chooser’s inflation expectations, use those to work out the value of $1,000, and then plug that value into a decision on how to bet. Every decision is sensitive to every kind of uncertainty, in a way that makes the theory practically impossible to apply. Sometimes life is hard, and the right theory is just impossible to correctly apply. But it’s a reason to prefer trying to see whether an easier to apply theory, i.e., expectationism, is worth sticking with.






1. There is a survey article from a few years ago - Elliott (2019) - that has summaries of the then state-of-the-art on these two questions. And it makes it very striking how little the literatures on each of them overlap.



2. Some theorists will put conditional probabilities in place of probabilities in this formula, so they’ll use Pr(H|X) rather than Pr(H). But since we’re restricting attention to normal problems, this is a distinction without a relevant difference.



3. More precisely, it says the following. If B is between A and C in value, and the difference in value between A and B equals the difference in value between B and C, then a rational agent will be indifferent between getting B for sure, and a 50/50 chance of getting A or C. The risk-averse agent, in the sense of risk-aversion at issue here, will prefer B.



4. To modify the example of the previous footnote, if A, B and C are monetary rewards, and B is half-way between A and C in terms of its monetary value, then expectationism says that an agent can, and probably should, prefer B to a 50/50 chance of getting A or C.



5. Philosophers often attribute the result that expectationism implies News is Valuable to Good (1967), but it’s really just a reformulation of a result due to David Blackwell (1951), which I think is a better attribution. That said, Das (2023) notes that a similar result is in an old note by C. S. Peirce (1967), first published in an academic setting in 1967, but (according to Wible (1994)), published in a US government report in 1879. So maybe the result is very old.



6. I’ll have much more to say about this in Chapter 9.



7. A certain kind of pragmatist might take the reasoning in this paragraph to be an independent argument for expectationism.



8. See Alcoba (2023) for what happens when people start thinking that bet is a bad one.



9. Joanna Thoma (2019) develops a subtle critique of some non-expectationist theories starting with something like this point. And the way I’m developing the point also owes a lot to the observation Ray Briggs (2015) makes that expectationism is “a valuable tool that enables theorists to simplify so-called grand-world decisions into so-called small-world decisions.”





4 Causal

It shouldn’t be controversial to claim that game theory textbooks are committed a broadly causal version of decision theory.1 For one thing, they always recommend defecting in Prisoners’ Dilemma, even when playing with a twin. As David Lewis showed, this is equivalent to recommending two-boxing in Newcomb’s Problem (Lewis, 1979). They endorse the causal decision theorist’s signature argument form: the deletion of strongly dominated strategies. Indeed, the typical book introduces this before it introduces anything about probability. When they do get around to probabilities, they tend to define the expected value of a choice in a way only a causal decision theorist could endorse. In particular, they define expected values using unconditional, rather than conditional, probabilities.2 And the probabilities are simply probabilities of states, not probabilities of any kind of counterfactual. Indeed, you can go entire textbooks without even getting a symbol for a counterfactual conditional.

What’s more controversial is that they are right to adopt a kind of causal decision theory (CDT).3 In the recent literature, I think there are three main kinds of problem that have been raised for CDT. First, it does badly in cases where there are no pure ratifiable strategies. Second, it gives strange results in cases involving betting on grand propositions about the past history of the world, or about the laws of nature. Third, it leaves its proponents will less money in Newcomb’s Problem than EDT does. In this chapter I’ll respond to each of these in turn.


4.1 No Ratifiable Choices

In some simple cases, neither of the options on the table look very good by the lights of GDT. Table 4.1 is an almost maximally simple case.




Table 4.1: A problem with no ratifiable choice





	
	PA
	PB





	A
	0
	100



	B
	100
	0










Everyone agrees that there is nothing to choose between the options here.4 Things get complicated when A gets somewhat sweetened, say by adding 99 to the payouts if Chooser selects A, resulting in Table 4.2.




Table 4.2: An asymmetric problem with no ratifiable choice





	
	PA
	PB





	A
	99
	199



	B
	100
	0










Many versions of CDT, including GDT, do not unconditionally recommend A in this case. Yet there are many problems with the same structure as Table 4.2 where people have insisted that intuition says A is the only rational choice, and it is a problem for a decision theory that doesn’t agree.5

A related objection is raised by Arif Ahmed (2014) and by Jack Spencer and Ian Wells (2019). I’ll focus on the latter version, but the points are essentially the same. Start with Table 4.1 and add a third option X. X gets a guaranteed return of 40, and if Demon predicts X, then A and B return 50. They call this problem The Frustrator.




Table 4.3: The Frustrator





	
	PA
	PB
	PX





	A
	0
	100
	50



	B
	100
	0
	50



	X
	40
	40
	40










They say, and many seem to agree, that intuition says that taking X is the only rational option. This is a bit surprising since there are two things wrong with X. Or, better, there is one thing wrong with X that has two manifestations which turn out to be equivalent.

For one thing X is strongly dominated by the mixed strategy of playing A and B with probability 0.5 each. Whatever Demon does, that mixed strategy has an expected return of 50, while X has a guaranteed return of 40.

For another thing, there is no probability distribution over the three states, PA, PB, and PX, such that X maximises expected utility. If Pr(PA) ≥ Pr(PB), then A will have a higher expected return than X, and if Pr(PB) ≥ Pr(PA), then B will have a greater return than X. In game-theoretic terms, X is not a best response (Bonanno, 2018: 41); no matter what Chooser thinks Demon will do, indeed no matter what probability Chooser has over Demon’s choices, X is sub-optimal.

The last two things turn out to be equivalent. As Pearce (1984) shows, an option is sometimes a best response iff it is not strictly dominated by any other pure or mixed strategy.6 That is, for any option O, there is some probability distribution over the states such that no alternative to O has a higher expected utility iff there is no mixture of alternatives to O that has a higher expected return than O in all states.

GDT’s response to these kinds of problems is in two parts. One part is to argue, as I will in Chapter 8, that the intuitions behind cases like this are unstable. The other is to argue that in fact the right choice here is to play the mixed strategy. That requires arguing that mixed strategies are available, as I will in Chapter 5, and indeed saying more about what it is to play a mixed strategy. And then it requires appealing to Pearce’s result to say that any option ruled out in cases like The Frustrator is in fact strictly dominated, and so not choice-worthy.

There are a lot of promissory notes in the last paragraph, but hopefully I’ve said enough to say how GDT will, eventually, respond to cases like these.



4.2 Laws, and other Non-Events


	Cite Ahmed book for the general problem

	Cite Hedden’s recent version



I’m not going to reply to this problem as much as dismiss it. There are three reasons to think that it isn’t the kind of thing we should worry about given the purposes for which CDT is used.

One immediate reason for dismissing it is that this is not a case that satisfies the idealising constraints, and CDT is a theory of ideal decision. If what Chooser can do is determined by the past and the laws, and Chooser doesn’t know the past or the laws, then Chooser doesn’t know what they can do. And in ideal decision theory, Chooser always knows what they can do. Just what decision theory should look like in situations where the range of possible choices is potentially unknown is quite tricky; I suspect it should not be expectationist. But it’s not the problem CDT, or for that matter EDT, is addressing.

Second, I’m not sure we should go along with the claim that the laws are causally independent of our actions. Distinguish the following two claims:


	A is causally independent of B iff it is not the case that B causes, in whole or in part, A.

	A is causally independent of B iff A and B are events such that it is not the case that B causes, in whole or in part, A.



When A is a proposition about the laws, and B is a proposition about a particular action, the first is somewhat plausible. (Though I’ll dispute it presently.) But the second is rather implausible. There was no event of the laws of nature being imposed, perhaps in some divine law-giving ceremony.

The claim I’m making here is roughly that talk of causal independence presupposes that the allegedly independent things are the right kinds of things to stand in causal relationships. That is, that they are events. When I say that the states of the world must be causally independent of Chooser’s action, I mean that they are the kind of thing that could have been caused by some action, but in fact they are not.

The main concern with this reply is that it overgenerates. We want to apply decision theory to bets on laws of nature, as when a chemist is betting on which research program will be most worthwhile. And some applications of causal decision theory, like the Spence model of education [insert citation here!] also seem to rely on states, like the underlying cognitive skill of the decider, that aren’t obviously events. So we’d have to see if imposing this constraint would undermine desired applications of decision theory.7

This gets to the final objection: perhaps we do in fact cause the past. It’s really tricky in the context of determinism to even say just what it is for a proposition to even be about a time, let alone motivate a causal independence claim.

Consider a toy example. I start eating my lunchtime burrito precisely four hours after my cat, Squid, started eating her breakfast. Call this proposition p. What time is the proposition p about? Is it when Squid ate her breakfast, or when I ate my lunch? It seems at least in part to be about the earlier time. Add to the story that my burrito was delayed because the person making it messed up a step. Did that mess-up cause p, and thereby cause a proposition in part about the past to be true? I think it sort of did; the bar on backward causation only applies to very special kinds of propositions, and p is not one of them.

Now change the example a bit. Squid sleeps in and doesn’t have breakfast. But we’re now in a deterministic world. At nine o’clock, the world is such that it’s determined I will start eating a burrito at one o’clock. Did the person who messed up the order cause me to start eating at one o’clock? Sure - I would have eating earlier without them. Did they cause the world at nine o’clock to be such that I’d start eating at one o’clock? Well, that’s a harder question. On the one hand, it would seem like a weird kind of backwards causation if they did so. On the other hand, if they did not, we have to distinguish the causal role of claims that are nomologically equivalent. That sounds bad too.

I think the best thing to say here is, echoing the previous point, that claims like Messing up the order caused the world at nine o’clock to be such that I started eating at one o’clock have a presupposition failure, and are neither true nor false. And the causal independence constraint is that it is false that the action Chooser takes causes which state of the world is actual.

Things are even clearer when it comes to propositions about the laws. Like David Lewis, I’m a Humean about laws of nature. So I think laws are constituted by all the actions in the world, past, present, and future. So I think we all totally cause, and constitute, the laws in everything we do. Now I don’t expect everyone to agree with this kind of Humeanism. But I do find it very odd that something which is set up as an objection to Lewis on decision theory8 simply starts with the assumption that Lewis is wrong about laws.


	Note I’m really dismissing this problem not replying to it

	Objection 1: This violates the idealising constraints; we don’t know what we can do.

	Objection 2: These are not events, and causal independence requires independent events. (Caveat: All that matters is that it can be treated as an event, as in Spence or ChoKreps. Can it? Eh, maybe.)

	Objection 3: I think we do maybe cause the laws (or the past). One reason - Humeanism implies future events are partially constitutive of the laws. (Caveat: My response to Hawthorne.) And if determinism is true, then counterfactuals go all funny; maybe the past is counterfactually sensitive to current actions (for yes, see Lewis; for no, see Dorr).

	General objection: The point is to explain, predict, and maybe evaluate, ordinary people making ordinary decisions. And ordinary people come with ordinary pictures of how the world works. If it turned out the theory didn’t even apply to people with non-standard notions of causation, or who applied the notion of causation beyond its intended scope of understanding current day interactions between medium sized dry goods, I wouldn’t be too worried.





4.3 War on WAR

That leaves the point that CDT leaves one poorly off in Newcomb’s Problem, while other theories, like evidential decision theory (EDT) leave one well off. This isn’t a particular mark against CDT, since other theories, like EDT, leave one poorly off in some situations. Here is one such case.

There are two demons, who will predict what Chooser will do. Both of them are arbitrarily good, though not quite perfect, and their errors are independent. Both demons will predict what Chooser does before anything else happens. Chooser will play either the left or right game in Table 4.4.




Table 4.4: A Newcomb problem with two demons.







(a) Demon-1 predicts A





	
	PA
	PB





	A
	2
	0



	B
	3
	1
















(b) Demon-1 predicts B





	
	PA
	PB





	A
	1002
	1000



	B
	1003
	1001



















If Demon-1 predicts that Chooser will play A, Demon-1 will offer Chooser Table 4.4 (a); if Demon-1 predicts that Chooser will play B, Demon-1 will offer Chooser Table 4.4 (b). And Chooser knows what they are playing, that’s part of what it is to play a game, so Demon-1’s prediction will be announced, though Demon-2’s prediction will be secret. After Chooser makes a decision, Demon-2’s prediction will be used for determining whether the payout is from column PA or PB. In almost all cases, if Chooser uses CDT, they will get 1001, while if they use EDT, they will get 2. So in this case, CDT will get more than EDT.

This case is not meant as an objection to EDT. It is perfectly fair for the evidential decision theorist to complain that they have simply been the victim of a Demon who intends to punish users of EDT, and reward users of CDT. That seems a perfectly fair complaint. But if the evidential decision theorist makes it, they cannot object when causal decision theorists, such as Lewis (1981), use the same language to describe Newcomb’s Problem. The ‘objection’ that CDT leaves one poorly off in one particular case is equally an objection to everyone, and so it is an objection to no one.

One might object that this is unfair because at the time they make decisions, the EDTer and the CDTer have different evidence. After all, they will know what Demon-1 predicted and it will (almost certainly) be different in each case. Can we get rid of that step? We can, but it’s a bit complicated, and I’ve put that case in Appendix D. The short version is that there is an example where some versions of CDT predictably do better than EDT, even though at every point the followers of EDT and (those versions of) CDT have the same evidence when they are making choices.

While followers of EDT end up with more money than followers of causal theories when playing Newcomb’s Problem, this is not because of the distinctive money-making powers of EDT. It’s because Newcomb’s Problem is designed to leave causally based decision theories badly off. Design a case to leave evidential theories badly off, and they’ll be badly off. The “Why Ain’Cha Rich?” consideration tells against everyone, so it overgenerates, so it should be rejected.

Well, not quite everyone. It doesn’t tell against some kind of ‘resolute’ decision theories which recommend one-box in Newcomb’s Problem and Up in Table 4.4.9. Those theories leave their proponents well off in all the cases. The so-called ‘foundational decision theory’ that Levinstein & Soares (2020) endorse also endorse the same three choices. But those theories are vulnerable to much more serious objections, that I’ll come to in Section 7.4.

So I conclude that there is no good objection to adopting a broadly causal decision theory, much as the game theorists do. But which version of CDT do they adopt, and are they right to do so? That will take us much more time.







1. This point is made by Harper (1988), and many (though not all) of the conclusions I draw in this chapter will be similar to ones he drew.



2. See, for instance, the introduction of them on page 136 of Bonanno (2018). And note that we get 135 pages before the notion of an expectation is introduced; that’s how much is done simply with dominance reasoning



3. Recall that I’m using ‘CDT’ here as the name for a family of theories. The point of this chapter will be to argue that the member of the family I prefer is immune to several challenges that have been raised against other members of the family.



4. Almost everyone agrees that Chooser should be indifferent between A and B here. I don’t, for reasons that will become important presently, and will be discussed much more in Chapter 8. I think A and B should be treated symmetrically, of course, but they are incomparable not equally good.



5. This objection goes back to Richter (1984). The most memorable version of an asymmetric problem with no ratifiable choice is the Psychopath Button case presented by Andy Egan (2007).



6. Bonanno (2018: 207) attributes this to Pearce, who has a rather elegant proof of the result that involves turning the decision problem into a zero-sum game, and applying a famous result of Nash’s.



7. I rather doubt EDT is compatible with the use of signaling games to model real-world phenomena, so this objection isn’t entirely good news for the critic of CDT.



8. Ahmed says that this case is an objection to CDT more generally, but it’s clear from the introduction to his book that he’s really just objecting to Lewis. He gestures in the direction of an argument that Lewis’s version of CDT is sufficiently general that objections to it will apply to all other versions. But that claim is false, despite it’s Ludovician pedigree. O“ne really shouldn’t take objections to Lewis’s version of CDT to apply to the versions defended by Skyrms, or Joyce, or Fusco, or me.



9. These theories recommend always playing Up in Figure D.1, the ‘complicated’ example I mentioned above





5 Mixtures


5.1 Ideal Agents Can Mix

Perhaps the biggest difference between the decision theory found in game theory textbooks, and the one found in philosophy journals, concerns the status of mixed strategies. In the textbooks, mixed strategies are brought in almost without comment, or perhaps with a remark about their role in a celebrated theorem by Nash (1951). In philosophy journals, the possibility of mixed strategies is often dismissed almost as quickly.

The philosophers’ dismissal is usually accompanied by one or both of the following two reasons.1 First, Chooser might not be capable of carrying out a mixed strategy. They might not, for instance, have any coins in their pocket.2 Second, Demon might punish people for randomising in some way, so the payouts will change. I’m going to argue that both reasons overgenerate. If they are reasons to reject mixed strategies, they are also reasons to reject the claim that agents have perfect knowledge of arithmetic. Since we do assume the latter, in decision theory agents take any bet on a true arithmetic claim at any odds, since all arithmetic truths have probability 1, we should also assume mixed strategies are permitted.

It isn’t obvious why choosers should be perfect at arithmetic. True, calculators are a real help, but not everyone has a calculator in their pocket. I argued in Section 2.3 that the reason we make this idealisation is that it is helpful for the explanatory tasks we usually use decision theory for. The uses of game theory suggest that allowing mixtures is a similarly helpful idealisation. Once it is noted that this is an idealisation, it doesn’t matter that it isn’t a realistic description of all people making decisions. Requiring realism, and in particular requiring that choosers have a realistic level of arithmetic ability, would destroy decision theory as we know it.

The thought that predictors might punish randomisation is even less conducive to decision theory as we know it. Think about the following problem. Chooser will be given a sequence of pairs of two digit numbers. They can reply by either saying a number, or saying “Pass”. If they say a number, they get $2 if it is the sum of those numbers, and nothing otherwise. If they pass, they get $1. The catch is that if they are detected doing any mental arithmetic between hearing the numbers and saying something, they will be tortured. Decision theory as we know it has nothing to say about this case. Ideally, they simply say the right answer each time, and all the theories in the literature say that’s the right thing to do. In practice, that’s an absurd strategy. Chooser should utter the word “Pass” as often as they can, before they unintentionally do any mental arithmetic. The point is that as soon as we put constraints on how Chooser comes to act, and not just on what action Chooser performs, decision theory as we know it ceases to apply. And playing a mixed strategy is a way of coming to act. Punishing Chooser for it is like punishing Chooser for doing mental arithmetic, and is equally destructive to decision theory.3

Perhaps you think my account of idealisation in Chapter 2 was wrong, and idealisations are really things we should be aiming for. This doesn’t block the argument that ideal agents can play mixed strategies. Being able to carry out a mixed strategy is of practical value, especially when there are predictors around.4 It’s not good to lose every game of rock-paper-scissors to the nearest predictor. If some mental activity is of practical value, then being able to carry it out is a skill to do with practical rationality. The idealised agents in decision theory have all the skills to do with practical rationality. Hence they can carry out mixed strategies, since carrying them out is a skill to do with practical rationality. So I conclude that if we are idealising, and if that idealisation extends at least as far as arithmetic perfection, it should also extend to being able to carry out mixed strategies.

That’s not to say all decision theory should be idealised decision theory. We certainly need theories for real humans. Nor is it to say that decision theory for agents who can’t perform mixed strategies is useless. For any set of idealisations, it could in principle be useful to work out what happens when you relax some of them from the model. The thing that is odd about contemporary philosophical decision theory, and the thing I’ve been stressing in this chapter, is that there should be some motivation for why one leaves some idealisations in place, and relaxes others. I don’t see any theoretical or practical interest in working out decision theory for agents who are logically and mathematically perfect, but can’t carry out mixed strategies. Such agents are not a lot like us; since we are not logically and mathematically perfect. And they aren’t even particularly close to us; most people are better at carrying out unpredictable mixed strategies than they are at solving the optimisation problems they face in everyday life. That said, it’s important to be cautious here. It’s often hard to tell in advance which combinations of keeping these idealisations and relaxing those will be useful. Still, I haven’t seen much use for the particular combination that most philosophers have landed on, and I’m not sure what use it even could have.

So from now on I’ll assume (a) if two strategies are available, so is any mixed strategy built on them, and (b) if Chooser plays a mixed strategy, Demon can possibly predict that they play the mixed strategy, but not the output of it.



5.2 What is a Mixed Strategy?







1. These reasons are both offered, briefly, by Nozick (n.d.), so they have a history in decision theory.



2. Not a particularly realistic concern when everyone carries a smartphone, but in theory smartphones might not exist.



3. It’s important to remember here that we are doing idealised decision theory. My view is that idealised decision theory has nothing to say about cases where someone will be punished for doing mental arithmetic.



4. This point goes back at least to Oskar Morgenstern’s discussion of the Holmes-Moriarty game (Morgenstern (1935)).





6 Ratificationist

Solution concepts in game theory tend to be equilibria. When game theorists describe a situation as an equilibria, they mean that everyone is happy with their moves knowing what all the moves of all the players are. (Or, at least, they are as happy as they can be.) Put in decision theoretic terms, that means that all solutions are ratifiable. Any solution of a decision problem involves Chooser being happy with their choice once it is made. That is, if the correct theory says X is choiceworthy in a particular situation, it also says that X is choiceworthy conditional on being chosen.


6.1 A Brief History of Ratificationism

Ratificationism, the view that the correct theory says all choices are ratifiable in this sense, used to be a more popular view among decision theorists. Richard Jeffrey (1983) added a ratifiability constraint to a broadly evidential decision theory. Ratifiability was endorsed by causal theorists such as Weirich (1985) and Harper (1986). It subsequently fell out of popularity, though it has been recently endorsed by Fusco (n.d.). The loss of popularity was for two reasons.

One was the existence of cases where there is (allegedly) no ratifiable option. Table 6.1 is one such case.




Table 6.1: A case with no pure ratifiable options.





	
	PA
	PB





	A
	3
	5



	B
	4
	3










If Chooser plays A, they would prefer to play B. If Chooser plays B, they would prefer to play A. Things get worse if we add an option that is ratifiable, but unfortunate, as in Table 6.2.




Table 6.2: A case with only a bad pure ratifiable option.





	
	PA
	PB
	PX





	A
	3
	5
	0



	B
	4
	3
	0



	X
	0
	0
	0










The only ratifiable option is X, but surely it is worse than Up or Down. One might avoid this example by saying that there is a weak dominance constraint on rational choices, as well as a ratifiability constraint. But that won’t help us much, as was pointed out by Skyrms (1984), since in Table 6.3 there is no weakly dominant option, but X is surely still a bad play.




Table 6.3: Skyrms’s counterexample to ratificationism.





	
	PA
	PB
	PX





	A
	3
	5
	0



	B
	4
	3
	0



	X
	0
	0
	ε\varepsilon










A better option is to insist, as Harper (1986) did, and as I argued in Chapter 5, that if Chooser is rational, they can play a mixed strategy. In all three of these games, the mixed strategy of (0.5 U, 0.5 D) will be ratifiable, as long as Chooser forms the belief (upon choosing to play this), that Demon will play the mixed strategy (1/3 U, 2/3 D). That’s a sensible thing for Demon to play, since it is the only strategy that is ratifiable for Demon if Demon thinks Chooser can tell what they are going to do. And given Chooser’s knowledge of Demon’s goals, Chooser can tell what Demon is going to do once they choose.

So if mixed strategies are allowed, neither of the problems for ratifiability persist.



6.2 Two Quick Arguments for Ratificationism

Ratifiability is an intuitive constraint. There is something very odd about saying that such-and-such is a rational thing to do, but whoever does it will regret it the moment they act. If a theory does not endorse ratifiability, it feels like Chooser could have the following conversation with Theory. (In this example, Theory recommends X, but says it is better to have done Y conditional on having done X. If Theory does not comply with ratifiability, an example like this exists.)

Chooser: I believe in you Theory, I’ll do what you say.

Theory: Do X!

Chooser: Done.

Theory: Oh no, you should have done Y.

Chooser: Why didn’t you say that earlier?

Theory: Because earlier you hadn’t done X.

Chooser: But you told me to do X.

Theory: I didn’t know you would agree.

Chooser: I said that I would.

Theory: Er, I don’t know what to say.

That’s bad, and Theory should not sound like this.

It’s also an important part of game theory that there really isn’t a distinction between theorists and practitioners. A theorist can only say X is the right thing to do in situation S if someone actually in S could reason their way to doing X by following the exact same argument as the theorist uses to conclude that X is the right thing to do. That’s impossible if (a) the theory rejects ratifiability, and (b) the person in S knows that they are going to follow the theory. Their conclusion that they will do X will be self-undermining, so they won’t draw it. If the theorist draws it anyway, that violates the (rather attractive) idea that one can’t draw more conclusions from outside a game than what an intelligent player could draw from inside the game.



6.3 Ratifiability Without Mixtures

My defense of ratifiability made heavy use of mixed strategies. Could we defend ratifiability without appeal to mixed strategies? It’s not a completely impossible task, but nor is it an appealing one.

Table 6.1 poses no serious problem. Without mixed strategies, the case is simply a dilemma. And we know that there are dilemmas in decision theory. Here’s one familiar example. A sinner faces Judgment Day. Because of his sins, it is clear things will end badly for him. But he has done some good in his life, and that counts for something. The judge thinks he should get some days in the Good Place before being off to the Bad Place. But the judge can’t decide how many. So the judge says to the sinner to pick a natural number n, and the sinner will spend n days in the Good Place, and then goodbye. This clearly is a dilemma; for any large n, saying n! would be considerably better.1 Ahmed (2012) says that it is an objection to a theory that it allows dilemmas in cases with finitely many options; dilemmas should only arise in infinite cases. But he doesn’t really argue for this, and I can’t see what an argument would be. Once you’ve allowed dilemmas of any kind, the door is open to all of them.

Nor does Table 6.2 pose a problem, since as I said, the ratifiability theorist could add a weak dominance constraint and turn Second table into another dilemma.

The problem is Table 6.3. There the ratifiability theorist who does not allow mixed strategies has to say that the case is an odd kind of Newcomb Problem, where the rational agent will predictably do badly. But it’s a very odd Newcomb Problem; by choosing X the chooser didn’t even make themselves better off. Indeed, they guaranteed the lowest payout in the game. I don’t have a knock-down argument here, and maybe there is more to be said. This is where I think the argument for ratificationism really needs mixed strategies.







1. Note that this is true even if days in heaven have diminishing marginal utility, so the dilemma can arise even if we work within bounded utility theory. This is not just the kind of problem, as discussed by Goodsell (n.d.), that arises in decision theory with unbounded utilities.





7 Dual Mandate


7.1 Introduction

This chapter marks a turning point in the book. From here on, a large amount of the time will be spent discussion situations involving dynamic choice. A central argument for GDT is that only it, or something like it, is compatible with plausible principles of dynamic choice.

The aim of this chapter is to defend what I call the Dual Mandate. In dynamic choice situations, rational Chooser will act in such a way that (a) each individual choice they make is sensible, and (b) the choices they make collectively are sensible. And I’ll defend the claim that (a) and (b) are distinct constraints on rational Chooser. This position is, I think, fairly orthodox in game theory. But it is not, I believe, widely held in philosophical decision theory. The caveat there is because a lot of decision theorists do not discuss dynamic choice, so I can’t always tell what their view is. But of the ones that do, most either reject (a), saying that only collective choices are to be evaluated, reject (b), saying that only individual choices are to be evaluated, or deny that these are distinct constraints. The middle option is by far the most common, but you can easily enough find examples of all three. It’s somewhat harder to find examples of people in the philosophy literature endorsing the Dual Mandate.

For related reasons, this chapter will be longer and more technical than what came before. Even saying what the Dual Mandate says involves some setup. So this section will largely be about defining the key terms.


7.1.1 Decision Trees

I’ll call the dynamic choice situations I’ll be interested in decision trees. To define them, it helps to start with an orthodox definition of a game tree.


“A finite extensive form (or frame) with perfect recall consists of the following items.


	A finite rooted directed tree.1

	A set of players I = {1,…,n} and a function that assigns one player to every decision node.

	A set of actions A and a function that assigns one action to every directed edge, satisfying the restriction that no two edges out of the same node are assigned the same action.

	A set of outcomes O and a function that assigns an outcome to every terminal node.

	For every player i ∈\in I, a partition 𝔇i\mathfrak{D}_i of the set Di of decision nodes assigned to player i (thus 𝔇i\mathfrak{D}_i is a collection of mutually disjoint subsets of Di whose union is equal to Di). Each element of 𝔇i\mathfrak{D}_i is called an information set of player i.”(Bonanno, 2018: 119)





The quote continues with some restrictions on 𝔇i\mathfrak{D}_i, but I want to pause first to say what this is supposed to represent, and then it is easy to say informally what the constraints are. This partition is an epistemic accessibility relation. If two nodes are in the same cell of the partition, then when the player is in one of them, for all they know, they are in the other. The strongest thing they know, when they are at a particular node, is that they are somewhere in that cell of the partition.

Implicitly, the assumption here is that the right accessibility relation for epistemic logic is an equivalence relation. That’s absurd in full generality. But I think in this context it’s a harmless enough idealisation. That is, it’s harmless enough if we remember that an idealisation here is a simplification, and not something that we think is desirable, or in any way something to aim for.

There are two standard restrictions on 𝔇i\mathfrak{D}_i. First, players know what moves are possible, so for any two nodes in a cell of 𝔇i\mathfrak{D}_i, the same actions are possible. Second, players remember their actions, so for any two nodes in a cell of 𝔇i\mathfrak{D}_i, the paths to those nodes only differ with respect to moves made by other players.

We’re also going to make three more assumptions that are I think implicit in the standard formulation, but not always made explicit.2 Say a ‘play’ is a particular path through the tree that happens in real time. The assumptions concern what happens in all plays of a tree thus understood.

First, each player is motivated to get the best outcome possible. If we interpret the outcomes as preferences of the player at the end of the play, and assume that players are motivated by their current preferences, this is in effect an assumption that preferences do not change over the course of the play.

Second, the tree is common knowledge at the start of the play. A player will not acquire new capacities over the game, or learn that they had capacities they didn’t realise. They will not acquire any capacity to make distinctions between possibilities that they did not have at the start of the play. So, for instance, there can’t be a point in the tree where a player meets a new individual, and acquires by acquaintance the ability to have singular thoughts about that person, and distinguish that person from descriptive duplicates.3

Third, it is common knowledge among all the time-slices of a player that all of the player’s time-slices are rational. At this stage, it’s important that ‘rational’ be left as something of a placeholder, or, perhaps better, a variable. In some sense the aim of the theorising around here is to solve for the value of ‘rational’ given some intuitive data about rational play. But whatever rationality is, we assume the player always has it, they always know they will always have it, they always know that they always know they will always have it, and so on.



7.1.2 Strategies

A strategy for player i is a function from the members of 𝔇i\mathfrak{D}_i to probability distributions over actions. That is, the strategy says which action, or mixed action, a player will do at each information set that they could reach consistent with the rules of the game.

It will become important that these are extremely fine-grained. A strategy describes what a player will do at nodes that are ruled out by other choices the player makes. Consider a game that consists of two rounds of some simple two-player, two-choice game, like Prisoners’ Dilemma, with the results of the first round revealed before the second round is played. Each player has 32 strategies. (So there are 1024 strategy pairs.) The tree for the game has five information sets where each player might move; the first-round game, then, since there are four ways the first game could go, four more possibilities for what they might know when the second-round game is played. Since there are 25, i.e., 32, ways to make binary choices over five possible choices, there are 32 strategies.4

I’m going to assume a kind of realism about strategies. Players actually have dispositions about what they will do at nodes that aren’t reached, and even at nodes that couldn’t be reached given their prior dispositions. These dispositions are at least real enough to play the following two roles: they can be the conditions that conditional probabilities are defined over, and they are subject to evaluation as rational or irrational.



7.1.3 Special Players

Trees in game theory textbooks frequently designate one special player: Nature (Bonanno, 2018: 134ff). Nature is different to human players in two key respects.

Nature does not care about which outcome the game ends with; formally, we describe an outcome by listing the utilities for the players other than Nature.

Nature is not rational. It is usually taken to be common knowledge among the other players that they are rational; but Nature is treated differently. Instead of assuming rationality, we assume common knowledge of the externally provided probability distribution over the possible moves Nature might make at each node.5

The key formal move in this book is to introduce new players, demons, which behave a bit like rational players, and a bit like Nature.

A decision tree, as I’ll understand it in this book, is like a game tree, but with more players that are distinctive in the way Nature is. There is only one player stipulated to be rational: Chooser. (They will be player 1 in what follows, unless stated otherwise.) At most one player is Nature, in the game-theoretic sense. The other players are all demons. If a demon moves at a node, then Chooser knows not the unconditional probability of that demon’s possible actions, but the conditional probability of the demon’s actions given their strategy choice. In more familiar terms, the demon predicts their strategy with a certain probability of accuracy, and has dispositions about what to do given each prediction.

While these demons are a lot like the demons that have been central to decision theory ever since the introduction of Newcomb’s Problem, there are two things I’m doing differently here that I want to note up front. First, there may be more than one demon. In the examples to follow, there will occasionally be four players: Chooser, two demons, and Nature. Second, the conditional probabilities are conditional on strategies, not just choices. This will matter in two stage games; to make the second stage game be just like the familiar games in decision theory (like Newcomb’s Problem), it will be important that Demon’s dispositions are sensitive to Chooser’s dispositions about the second game. And this is important even in cases (of which there will be a few below) where Chooser can choose whether to play that second-round game.



7.1.4 Extensive Form and Strategic Form

Given a decision tree, we can generate a related game where each player has precisely one choice: what strategy they will play. This sometimes called the strategic form of the game, and sometimes called the normal form. I’ll primarily use the earlier, more evocative, term.6 The contrast, the decision tree where the players act over time, is called the extensive form of the game. I said the strategic form of a game is to its extensive form, but you might wonder how closely related it is. Is it, in some sense, the same game?

One way to make progress on this question is to ask whether the strategic form and extensive form are equivalent, in the sense that the following thesis is true.


	Strategic Form - Extensive Form Equivalence

	
Some moves in an extensive form of a decision tree are rational (both individually and collectively) iff they are part of some strategy that can be rationally played in the corresponding strategic form decision.




Most game theorists deny this equivalence.7 The examples used to motivate this are fairly simple. In Figure 7.1, Demon moves first, and Chooser moves second. Chooser can play A or B, Demon can play PA or PB. Demon wants these predictions to be correct. Chooser gets a reward iff Demon’s prediction is correct. Chooser gets a higher reward if they both choose A than if they both choose B. Demon is arbitrarily good at predicting Chooser’s strategy, and this is common knowledge to both players. Demon will do whatever makes it most likely that their prediction is correct, or flip a coin if their choice does not affect the probability that they will make a correct prediction.










Figure 7.1: Tree Diagram of the Non-Equivalence Game.








Here is how to understand graphs like Figure 7.1. The circles are nodes where one or other player (Chooser, Demon, or Nature) has to make a choice. The open circle, here at the top of the tree, is the first such choice. Where possible, I’ll draw trees where later choices are lower on the page than earlier choices, but this isn’t always possible. What is always the case is that the open circle is the opening move. The small square nodes are terminal nodes; at that point the game ends, and Chooser collects their payout.

The strategic form of this game is given in Table 7.1. Demon clearly has two strategies, PA and PB. But Chooser has four; since they have to plan for a binary choice in two possibilities. I’ve written LXRY for the strategy of doing X on the left hand part of the tree, i.e., if Demon predicts A, and doing Y on the right hand part of the tree, i.e., if Demon predicts B.




Table 7.1: Strategic form of the Non-Equivalence Game





	
	PA
	PB





	LARA
	2
	0



	LARB
	2
	1



	LBRA
	0
	0



	LBRB
	0
	1










The argument against Strategic Form - Extensive Form Equivalence is now fairly simple. In Figure 7.1, there is only one rational choice: LARB. Whatever happens, Chooser has an option between getting something and getting nothing, and it’s better to get something than nothing. But in Table 7.1, there are many rational choices. The pair of Chooser playing LARA and Demon playing PA is a Nash equilibrium. If one’s theory of rational choice for strategic games is that any Nash equilibrium is rational, then playing LARA in Table 7.1 is rational. Hence different strategies are rational in Figure 7.1 and Table 7.1, so Equivalence fails.

There are a bunch of ways one could reply to this. One could argue that in fact LARA is rational in Figure 7.1. We’ll see a theory that says that in Section 7.4. One could argue that LARB is the only rational play in Table 7.1. This possibility complicates the dialectic around here, because while GDT rejects Equivalence, it also rejects this example. It agrees that LARB is the only rational choice in Table 7.1, because it weakly dominates LARA.8 The examples that motivate rejecting Equivalence within GDT are more complicated, and I’ll come back to them in Section 7.3.

Note that to save Equivalence, it’s not enough to merely deny that there are multiple permissible moves in Table 7.1. Evidential Decision Theory says that there is only one rational move in that game, and it’s LARA. That has an expected return of 2, while LARB has an expected return of 1.5. But EDT agrees that in Figure 7.1, the only rational strategy is LARB. So EDT agrees with the game theory textbooks that this is a counterexample to Equivalence, even though it disagrees about why it is a counterexample.




7.2 Four Options


7.2.1 Introducing the Contestants

I’ve already briefly alluded to these, but it’s time to set out in more detail the four approaches to dynamic choice that I’ll consider at greater length over this chapter.

Purely Strategic approaches say that Chooser uses decision theory to choose a strategy, and then implements that strategy at each node. This is sometimes known in philosophy as the resolute approach to decision theory.9 In a finite game, there will be finitely many strategies. This finite number may be very large, but it can be calculated. And similarly there are finitely many strategies for each of the non-human players, and Chooser can work out the conditional probability for each such strategy given their choice of strategy. So we have a very large, but finite, game, and most decision theories on the market in philosophy will have something to say about what Chooser should do in this large game. All that’s then left to do is to carry the strategy out.

Purely Consequentialist approaches say that Chooser will consider every decision at a node on its own merits, solely thinking about the consequences of that particular decision. This is sometimes called the ‘sophisticated’ approach to dynamic choice in philosophical discussions, but I prefer calling it the Purely Consequentialist approach. I don’t like the implicit endorsement in calling something sophisticated, and given that I’ve already called the rival approach strategic, having two names starting with the same letter is bad. The name I’m using echoes the influential understanding of consequentialism in Hammond (1988). And it gets at what is important about the view; that it rules out looking back.

If Chooser is Purely Consequentialist and they face a series of choices, they will work backwards.10 They will work out what they will do at terminal stages of the game, i.e., at stages where they will have no more decisions whatever they do. When they are making a decision at a non-terminal stage, they will treat their own future decisions as something to be predicted, not planned for. So they will have a probability distribution over the possible choices, and act as if Nature is (randomly) selecting which choice. Now we’ve stipulated that Chooser knows they will be rational in future stages, so in cases where there is only one rational choice, Chooser will assign probability 1 to them making that choice, and 0 to the alternatives. But in the cases where there are multiple options that are rationally permissible, this probability assignment might be more interesting, and I’ll have more to say in Section 7.5 about the effects of this.

Equivalence approaches say that Chooser does not have to adopt one or other of these approaches, because once we have the right theory of choice in one-shot games, it will turn out that the two approaches issue in the same verdicts. That is, it will turn out that Strategic Form - Normal Form Equivalence is true. Robert Stalnaker (1999) defends this view in game theory. I’ll argue that the differences between demonic decisions problems and games are just big enough that his defence can’t be adopted to the puzzles I’m looking at.11

Finally, the Dual Mandate approach says that both of the first two approaches were partly correct. Both of them correctly state necessary conditions for rational action. Where they go wrong is the ‘pure’ part, i.e., by saying that these are sufficient conditions for rational action. And that’s what GDT says, and what I’m going to defend.



7.2.2 Picturing the Views

Chooser has to act now, and which action is best depends in part on what they’ll do tomorrow? How should they think of tomorrow’s action?

Not as something they can control; they are a free and rational agent, who can’t simply be bound.

Not as something like the weather that they can merely predict; they don’t see themselves as simply a thing to be predicted.

Quote Stalnaker at length, can’t remember which paper.

Agree - we need something in between.

Strategic views as Strangelove; I bind myself into a position, the position that I would most like to be bound into.

Consequentialist views as Zaphod; future me is just this guy.

Neither is good.



7.2.3 Binding

Is it part of our theory of rationality that people can bind themselves?

Quote Spencer on this.

Not a great argument; even if we can’t bind, maybe ideal people can.

But it seems, and this is a judgment call, that we don’t get any extra explanatory power from doing that. Maybe we do, but most people will give up on plans that they are sure have failed, if the stakes are high enough.

GDT view: people can bind themselves to plans that make sense. If asked now whether I want to bet on heads or tails in an hour, I can bind myself to heads. I can form an intention, in the Bratman-Holton sense, to bet on heads, and simply carry it out. What was permissible, betting on tails, becomes impermissible. That seems to be possible, and add predictive weight.

In normal theories, this is just a weird edge case. Who cares? But for GDT, it’s the main case, since there are lots of times there are multiple permissible options.




7.3 Against Equivalence

I’ll start with arguing against Equivalence. This is the view that we don’t have to choose between Strategic and Consequentialist approaches to dynamic choice, because once we get the details of each theory right, we’ll see that they are equivalent.

Earlier I mentioned that this is usually rejected in game theory textbooks on the basis of examples like Figure 7.1 and Table 7.1. The strategic form of that game has a Nash equilibrium that seems obviously bad to play in the extensive form of the game.

This is a bad argument against equivalence because it’s easy to fix the theory of strategic choice to avoid the problem. If we say that weakly dominated strategies are not choice-worthy, then the strategies that can be rationally chosen in Table 7.1 are exactly the strategies that can be rationally played in Figure 7.1.

But this only shows that this example is not a counterexample to Equivalence. It could be that there are other cases that are counterexamples. Figure 7.2 is the game tree (in the sense described in Section 7.1.1) for one such example.










Figure 7.2: Tree Diagram of the Centipede Game








In Figure 7.2 are three stages, though the game might end at any stage. Chooser is the mover at stage 1 and, if the game gets that far, stage 3. Demon is the mover at stage 2, again if the game gets that far. At stage 1 and 2, if the mover moves down, the game ends. After stage 3, the game ends either way. Chooser’s payouts are given on the tree. Demon’s disposition is to do whatever they predict Chooser will do at stage 3, and they are arbitrarily good at predicting Chooser’s strategy.12

In this dynamic game, the only sensible thing for Chooser to do at stage 1 is to play A1. That’s because they know that if they get to stage 3, they will play A2, getting 3, rather than D2, getting 0.13 So they should believe that Demon will predict that they will play A2, and hence will play a. So they should believe at stage 1 that playing A1 will get 3, while playing D1 will get 2, so they should play A1 at stage 1.

None of that should be too surprising; it’s the standard backward induction solution of the game.14 But now consider what happens in the strategic form of the game. Chooser has four strategies: A1 or D1, crossed with A2 or D2. Let’s simply give these strategies names, as follows.




Table 7.2: The possible strategies for Chooser in Figure 7.2.





	Strategy
	Move 1
	Move 2





	S1
	D1
	D2



	S2
	D1
	A2



	S3
	A1
	D2



	S4
	A1
	A2










Then Demon has two moves as well, which I’ll call PO and PE. PO means that Demon predicts that Chooser will play an odd numbered strategy, i.e., S1 or S3. That is, Demon predicts that Chooser will play (or be disposed to play) D2. So PO is equivalent to Demon playing (or being disposed to play) d. PE means that Demon predicts that Chooser will play an even numbered strategy, i.e., S2 or S4. That is, Demon predicts that Chooser will play (or be disposed to play) A2. So PO is equivalent to Demon playing (or being disposed to play) a. Given that, we can describe the strategic form of the decision problem. That is, we can set out the strategies for Chooser and Demon, and say what payout Chooser gets for each possible pair of choices.




Table 7.3: The strategic form of Figure 7.2.





	
	PO
	PE





	S1
	2
	2



	S2
	2
	2



	S3
	0
	1



	S4
	3
	1










If Chooser was making a one-off choice in Table 7.3, it would be rational, according to GDT, to choose S2. That is ratifiable and not weakly dominated. It wouldn’t be rational to choose S1, because given S1 it would be better to choose S4. But given S2 is chosen, it is optimal, since once S2 is chosen, Chooser should believe that Demon is playing PE. So in this one-shot game, where one just chooses a strategy, it is rational (according to GDT) to play S2.

That’s my argument against Equivalence. In Table 7.3 it is rational to choose S2. But in Figure 7.2 it is not rational to play that strategy, i.e., to play D1, because the backward induction argument for playing A1 is sound. So the strategic and extensive forms of the game are not equivalent.

I could try to turn this into an argument against Purely Strategic approaches to decision theory as well, using the following reasoning.


	In Table 7.3, it is rational to play S2.

	In Figure 7.2, it is not rational to play S2.

	If Purely Strategic approaches to decision theory are correct, then the same choices are rational in Table 7.3 and Figure 7.2.

	Therefore, Purely Strategic approaches are incorrect.



But this argument would be blatantly question-begging. The argument for premise 2 relies on backward induction reasoning, and people who endorse Purely Strategic reasoning do so because they reject backward induction reasoning. So it wouldn’t be at all convincing. (Probably many people who endorse Purely Strategic approaches would reject premise 1 as well.) So in Section 7.4 I’ll offer some arguments against Purely Strategic approaches that are not so obviously question-begging.



7.4 Against Purely Strategic Approaches

From now on I’ll assume that rival theories are rejecting Equivalence, and rejecting Dual Mandate. So in this section I’ll focus on theories that say the right thing to do is to select a rational strategy, and then carry it out. And I take it to be part of this theory that sometimes this means making choices that do not make sense, by the theory’s own lights, if they were ‘one-off’ choices. If there are no such cases, the theory is either a version of Equivalence, or of the Dual Mandate.

For this reason, I won’t spend any time on versions of Causal Decision Theory that are Purely Strategic. Such theories would be unmotivated. Causal Decision Theorists think that in Newcomb’s Problem, one reason that it doesn’t make sense to choose the dominated option is that if one knew what Demon had predicted, one would definitely take the dominating option. That’s to say, they think the fact that one knows that some choice would be rational given further information is a reason to make the choice. And that’s in tension with the idea that it’s rational to play a strategy that will not make sense when it’s being carried out, just because at the start of the tree it looks like the best strategy.

In practice, defenders of Purely Strategic views do not normally assume CDT. There are, instead, two main motivations for Purely Strategic views. One of them won’t matter to this project. It is the idea that in non-ideal settings, particularly when preferences might change, or one might be irrational later, it might be better to simply choose a strategy and stick to it. Since I’m only talking about ideal theory here, I’ll set that aside. The other motivation is more interesting. It is that the reasons behind Evidential Decision Theory (EDT) are in fact better reasons to choose Strategic Evidential Decision Theory (SEDT).

SEDT is a fairly simple theory. It has two rules.


	In dynamic choices, one should choose an optimal strategy at the start of the tree, and carry that strategy out the rest of the way.

	The right way to evaluate strategies is to use Evidential Decision Theory.



SEDT is very similar to the Functional Decision Theory defended by Levinstein & Soares (2020). My excuses for using a new name are that (a) this name is a little more descriptive, and (b) I’m not quite sure that the theories are the same. I think they say the same things about every case I’ll discuss in this section, but Levinstein and Soares don’t discuss cases of demons who make imperfect predictions, so I’m guessing a little bit about what they’d say. And possibly my understanding of what a single decision problem is doesn’t exactly match theirs. So rather than do more exegesis, I’ll focus on SEDT, which is in any case an interesting theory.

One way to motivate SEDT is by thinking about a version of Newcomb’s Problem where Demon’s predictions are revealed to Chooser. The game tree for this variant on Newcomb’s Problem is in Figure 7.3.










Figure 7.3: Tree Diagram of the Open Newcomb game.








In Figure 7.3, regular EDT says to choose B. After all, no matter which node one is at, the best thing to do given that one is there is to take the extra 1 on offer. But it’s surprisingly hard to come up with reasons to choose A in the original problem that do not extend to this problem. The main reason which is offered, that people who choose A end up richer, applies equally well here. And the main objection that opponents make, that choosing A is strange because one knows that one would choose B once one discovered what prediction was made, does not have any bite if one would follow SEDT and not in fact choose B were the prediction revealed.

It’s a little amusing to imagine a proponent of regular EDT playing a version of Figure 7.3. Presumably they would do whatever they could to not learn what the prediction was until they could make a choice. After all, by their own lights, learning what the prediction was would cost them, in expectation, 999. So depending on how this information will be revealed, they will close their eyes, sing “La la la I can’t hear you” to block out noises, maybe hold their breath if the information will be revealed by distinctive smells, and so on. This doesn’t seem like an image of a practically rational Chooser, and SEDT avoids all these problems.

That’s not to say that SEDT is entirely without its own intuitive costs, even in simple cases like Figure 7.3. The person carrying out SEDT will give the following speech. “I am not here to be a hero; I’m not following some philosophical theory just because it’s cool. My job is making money. And, now that the prediction is revealed, I can see that I’ll make more money choosing B. But I’m taking A.” Again, this doesn’t sound great. But, they argue, it does in fact lead to getting more money, on average, so maybe there is something to it. And SEDT does not agree with EDT in the cases I described in Section 4.3, so I can’t say that they are relying, as EDT relies, on too narrow a diet of cases.

Still, SEDT is not defensible in all somewhat realistic situations. The example I’ll use to demonstrate this is rather more violent than the other examples in this book. But it needs to be rather violent in order to rule out the possibility of there being strategic or reputational considerations that are being left out.

Chooser is the Prime Minister of a small country, and they are threatened by a large nearby country, Neighbour. Unfortunately, Neighbour is thinking of carpet bombing Chooser’s capital, in retaliation for some perceived slight during trade negotiations. Chooser has no air defences to stop the bombing, and no allies who will rally to help.

Fortunately, Chooser has a mighty weapon, a Doomsday device, that could destroy Neighbour. Chooser has obviously threatened to use this, but Neighbour suspects it is a bluff. This is for a good reason; the doomsday device would also destroy Chooser’s own country. Neighbour is known to employ Demon who is at least 99% accurate in predicting what military plans Chooser will take.15 In practice, all Demon has to do is predict So Chooser can do Nothing (N), or use the Doomsday device (D), should neighbour attack. Chooser would obviously prefer no attack, and would certainly not use the device preemptively. And Neighbour will attack iff Demon predicts that Chooser will do Nothing. Given all that the decision table that Chooser faces is in Table 7.4.




Table 7.4: Deciding whether to retaliate.





	
	PN
	PD





	N
	-1
	0



	D
	-50
	0










In the top left, Neighbour bombs Chooser’s capital, thinking correctly that Chooser will not retaliate. In the top right and lower right, neighbour is sufficiently scared of the doomsday device that they do nothing. But in the bottom left, Neighbour attacks, and Chooser retaliates, creating a disaster for everyone, something 50 times worse than even the horrors of the carpet bombing.

Still, if Chooser is picking a strategy before anything starts, the strategy with the highest value, according to EDT, is to plan to use the Doomsday device. This has an expected return of -0.5; since one time in a hundred it returns -50, and otherwise it returns 0. That’s what SEDT says one should do. And it says Chooser should quite literally stick to their guns, even if they see the bombers coming, and they realise their bluff has failed.

This seems absurd to me, and it is the kind of result that drives game theorists to the dual mandate. In case that example isn’t decisive enough, let’s consider two more variants on it.

Change the example so that Chooser has two advisors who are talking to them as the bombers come in. One of them says that the Demon is 99% reliable. The other says that the Demon is 97% reliable. Whether Chooser launches the Doomsday device should, according to SEDT, depend on which advisor Chooser believes. This is just absurd. A debate about the general accuracy of a Demon can’t possibly be what these grave military decisions are based on.

Change the example again, and make it a bit more realistic. Chooser has the same two advisors, with the same views. Chooser thinks the one who says the Demon is 99% reliable is 60% likely to be right, and the other 40% likely. So Chooser forms the plan use the Doomsday device, because right now that’s the strategy with highest expected return. But having made that decision, much to everyone’s surprise, Neighbour attacks. SEDT now says to launch the Doomsday device.

But think about how the choice of plans looks to Chooser now. The actions of Neighbour are evidence about the reliability of Demon. And a simple application of Bayes’ Rule says that Chooser should now think the advisor who thought the demon was 97% reliable is 2/3 likely to be right. That is, given Chooser’s current evidence merely about the Demon’s reliability (and not about what the Demon actually did), SEDT says not to use the Doomsday device. Yet despite it not being either the utility maximising strategy, or the utility maximising choice, SEDT says to launch the Doomsday device. This seems completely absurd, and enough to have us move to a new theory.



7.5 Against Purely Consequentialist Approaches










Figure 7.4: Tree Diagram of the Open Newcomb game.











Table 7.5: The second round game in Figure 7.4.





	
	PA
	PB





	A
	8
	0



	B
	4
	4













Table 7.6: The strategy table for Figure 7.4.





	
	PA
	PB





	EA
	5
	5



	EB
	5
	5



	CA
	8
	0



	CB
	4
	4










First against CEDT - breaches the spirit of EDT.

Then against Gallow + Consequence: Could lead to choosing dominated option.

What about Hunting + Consequence? Not sure I have an argument there.

This has an important technical consequence: Purely Consequentialist theories are unstable in the sense Dmitri Gallow (n.d.) has described. If the pure consequentialist changes their own probability distribution over what they will do, what act is rational for them changes.16 I don’t think this is ever an issue for CEDT, but it is an issue for other Purely Consequentialist theories. For instance, GDT says that either A or B is a permissible choice in Table 1.5.







1. This is defined earlier, on page 75, but the details aren’t important to what we’re doing.



2. Bonanno does make all these explicit at various times, but doesn’t list them in one spot for neat quoting.



3. Following Stalnaker (2008), I think this constraint means that we can’t represent the Sleeping Beauty problem (Elga (2000)) as a tree, since in that problem Beauty gains the capacity to have singular thoughts about a time, the ‘now’ when she awakes, that she did not previously have.



4. Some of the results of the next few chapters came from work I started investigating what happened in two-round decision problems like that. None of that work appears here, because for every result I found, I eventually found an illustration with many fewer strategies. If you’re grateful you don’t have to look at 32-by-32 strategy tables, you can’t imagine how grateful I am to not be writing them.



5. Though note that does not mean all players know the probability of each move at any time Nature moves. It could be that while the game is going, a player does not know precisely which node they are at, so they do not know what probability distribution Nature is using. This is common in card games. If I don’t know what’s in your hand, I don’t know what cards are left, so I don’t know whether the probability that Nature is about to give a player the Jack of Hearts is, say, 0.025, or 0.



6. Whenever I come back to this material after time away, I can never remember what ‘normal form’ means. But it’s easy to remember that extensive form is extended in time, and strategic form is about strategy choice.



7. The next few paragraphs are based on the game theoretic notion of non-credible threats (Bonanno, 2018: 86ff).



8. I’ll discuss this more at length in Chapter 11.



9. That particular term, ‘resolute’, is associated with a view that Edward McClennen developed to deal with cases of foreseeable changes of preference (McClennen, 1990). As already indicated, I’m just looking at games where preferences do not change over the game.



10. See the discussion of backward induction on pages 80ff of Bonanno (2018).



11. This is just about the only place in the book where I’ll rely on a disanalogy between decision theory and game theory.



12. This problem is very closely modelled on a game described by Stalnaker (1998: 47). But note that how I’ve described Demon is different to how Stalnaker describes ‘Bob’, the player who moves at stage 2 in his version of the game. In his version of the game, the player who moves first just knows that the player who moves second is rational, and the function they are trying to maximise. In my version of the game, the player who moves first also knows how the player who moves second will react if they are indifferent between their options. That’s why I get what appears to be a different analysis to Stalnaker; we’re not disagreeing here I think, just analysing different games.



13. I’m assuming here that Chooser knows that they will be rational in the future, and this knowledge persists no matter what earlier choices they make. This is a substantial idealisation, but makes sense given the other idealisations that were described in Chapter 2.



14. Though I’ve been a bit more careful here about just what assumptions each player can make about the other at each stage than is usual.



15. It’s very important to this example that Demon is not perfectly accurate. There hasn’t been as much attention as there might have been to what happens to theories like SEDT in the context of good but not perfect Demons.

One might worry that the case is not, as promised, realistic, because states do not in fact have Demons. That’s true, but they do have spies, and analysts, and they are somewhat reliable in making predictions. It seems plausible that they could be reliable enough to get the case to work.



16. The point here is somewhat connected to the point Bonanno makes about how backwards induction works in games where a player is indifferent between certain outcomes (Bonanno, 2018: 80ff).





8 Indecisive


8.1 Introducing Indecision

Game theory is full of solution concepts; ideas for how to solve a game. That is, they are methods for determining the possible outcomes of a game played by rational players. Compared to philosophical decision theory, there are two big things to know about these solution concepts. One is that there are many of them. It isn’t like in philosophical decision theory where we are used to the idea that some theory, typically a variant on expected utility maximisation, will rule all cases. More complex solution concepts tend to give more intuitive results on more cases. But the complexity is a cost, and in any case no solution concept gets all the intuitions about all the cases. The other thing is that these solution concepts will often say that there are multiple possible outcomes for a game, and that knowing the players are rational doesn’t suffice to know what they will do. This chapter will argue that in this respect game theory is right and philosophical decision theory has typically been wrong; theory should not always give a unique answer as to what rational agents will do.

Say that a theory is indecisive if for at least one problem it says there are at least two options such that both are rationally permissible, and the options are not equally good. And say, following Ruth Chang (2002), that two options are equally good if improving either of them by a small amount epsilon would make that one better, i.e., would make it the only permissible choice. So an indecisive theory says that sometimes, multiple choices are permissible, and stay permissible after one or other is sweetened by a small improvement. The vast majority of decision theories on the market are decisive. That’s because they first assign a numerical value to each option, and say to choose with the highest value. This allows multiple options iff multiple choices have the same numerical value. But small increases in value to one option, what Chang calls sweetenings, are incompatible with the options having the same value both before and after the increase. So these theories do not allow indecisiveness.



8.2 Stag Hunt Decisions

Perhaps the most intuitive case for indecisiveness involves what I’ll call Stag Hunt decisions.1 Here is an example of a Stag Hunt decision.




Table 8.1: An example of a Stag Hunt.





	
	PUp
	PDown



	Up
	6
	0



	Down
	5
	2










Note three things about this game. First, both Up and Down are ratifiable. Second, Up has a higher expected return than Down. Third, Up has a higher possible regret than Down. If Chooser plays Up and Demon is wrong, Chooser gets 2 less than they might have otherwise. (They get 0 but could have got 2.) If Chooser plays Down and Demon is wrong, Chooser only gets 1 less than they might have otherwise. (They get 5 but could have got 6.)

There is considerable disagreement about what this means for Chooser. EDT says that Chooser should play Up, as does the ratifiable variant of EDT in Jeffrey (1983). Some causal decision theorists, such as Arntzenius (2008) and Gustafsson (2011), also say Chooser should play Up. On the other hand, several other causal decision theorists, like Wedgwood (2013), Gallow (2020), Podgorski (2022), and Barnett (2022), endorse playing Down on the ground of regret miminisation. I think both Up and Down are permissible. I also think this is the intuitively right verdict, though I place no weight on that intuition. In general, I think in any problem that has the three features described in the last paragraph (two equilibria, one better according to EDT, the other with lower possible regret), either option is permissible. Since lightly sweetening either Up or Down in this problem doesn’t change either feature, I think the right treatment of these games is indecisive.



8.3 Exit Games

My argument for indecisiveness will turn on a case that all seven of the views mentioned in the last paragraph agree on, namely Table 8.2.




Table 8.2: An example of a coordination game.





	
	PUp
	PDown



	Up
	4
	0



	Down
	0
	3










All of them agree that Up is the uniquely rational play in this example, and I think intuition agrees with them. I’ll argue, however, that Down is permissible. The argument turns on a variation that embeds Table 8.2 in a more complicated problem. This problem involves two demons, each of whom are arbitrarily good at predicting Chooser. The (first version of) the problem involves the following sequence.


	Both Demon-1 and Demon-2 predict Chooser, but do not reveal their prediction.

	If Demon-1 predicts Chooser plays Up, they Exit with probability 0.5, and Chooser gets 0. If Demon-1 predicts Chooser plays Down, they do not Exit. (That is, they Exit with probability 0.) If they Exit, the problem ends, and Chooser is told this. Otherwise, we go to the next step.

	Chooser chooses Up or Down.

	Demon-2’s prediction is revealed, and that determines whether we are in state PU or state PD.

	Chooser’s payouts are given by Table 8.2.



I’ll call these Exit Problems, and Table 8.3 gives the general form of such a problem. Our problem can be generated from Table 8.3 by setting b = c = e = y = 0, x = 0.5, a = and 4, d = 3.




Table 8.3: The abstract form of an Exit Problem.







(a) Exit Parameters





	Exit Payout
	e



	Pr(Exit | PUp)
	x



	Pr(Exit | PDown)
	y
















(b) Round 2 game





	
	PUp
	PDown



	Up
	a
	b



	Down
	c
	d



















Now consider a simple variant of the above 5 step problem. The same things happen, but steps 2 and 3 are reversed. That is, Chooser decides on Up or Down after the demons make their predictions, but before they are told whether Demon-1 decided to Exit. Still, their choice will only matter if Demon-1 decided not to Exit, since their choices do not make a difference if Demon-1 Exits. Call this variant the Early Choice version, and the original the Late Choice variant. I don’t have any clear intuitions about what to do in most Exit Problems, save for this constraint on choices.


	Exit Principle

	
In any Exit Problem, the same choices are permissible in the Early Choice and Late Choice variants.




This principle will be enough to argue that that the right account of Table 8.2 is indecisive. Before I show that, I’ll argue for Exit principle. In the next section I’ll give a direct argument for it, then show how it can be derived from two other important general principles.



8.4 Arguing for Exit Principle

The simplest reason to endorse Exit Principle comes from thinking about what Chooser is doing in the Early Choice variant. They are making a decision about what to do if Demon-1 doesn’t Exit. The way to make that decision is just to assume that Demon-1 doesn’t Exit, and then decide what to do. It just is the same choice as they face in the Late Choice variant, except now they make it in the context of a conditional. So they should decide it the same way.

In general, the following two questions should have the same answers.


	If p happens, what do you want to do?

	So, p happened. What do you want to do?



Here p is that Demon-1 doesn’t exit. All that Chooser is asked to do in the Early Variant is to say what they want to do if they have to make a choice, i.e., if Demon-1 doesn’t exit. In the Late Variant, they are either told they got nothing, or asked what they want to do now that it is public that Demon-1 didn’t exit. They should give the same answer as they gave to the conditional question.

One could see this as a consequence of applying something like the Ramsey test to conditional questions (Ramsey, 1990). Denying Exit Principle means treating these two very similar sounding questions differently, and that’s implausible.

Exit Principle can also be derived from some other more general principles. One of these is that the Dual Mandate approach to dynamic choice, as defended in Chapter 7, is correct. The other is that a restricted version of Strategic Form - Extensive Form Equivalence is correct. In Section 7.1.4 I introduced this equivalence and defined it as follows.


	Strategic Form - Extensive Form Equivalence

	
Some moves in an extensive form of a decision tree are rational (both individually and collectively) iff they are part of some strategy that can be rationally played in the corresponding strategic form decision.




As I noted there, this is widely rejected by game theory textbooks, though it does have notable defenders in philosophy (e.g., Stalnaker (1998)). But there is a special case of it that is at least implicitly endorsed.


	Restricted Strategic Form - Extensive Form Equivalence

	
Consider any decision tree where for each agent, either Chooser or Demon, there is at most one information set where they have to move. In such a tree, some moves are rational (both individually and collectively) iff they are part of some strategy that can be rationally played in the corresponding strategic form game.




I haven’t seen textbook explicitly endorse that, but I wouldn’t be surprised if one has somewhere. The reason I say that it is implicitly endorsed is that it is a consequence of every solution concept for dynamic games that are discussed. Indeed, it’s hard to even imagine a solution concept that would treat them differently.

Finally, one could argue, I think correctly, that anyone who violates Exit Principle will violate a plausible version of the Sure Thing Principle.2 Such an argument seems sound to me, but the Sure Thing Principle is controversial, and I prefer to put more weight on the argument from how conditional reasoning works in the previous paragraph. (Indeed, I think using the Exit Principle to motivate a version of the Sure Thing Principle is more plausible than the reverse argument.)



8.5 From Exit Principle to Indecisiveness

Any plausible theory that says that only Up is rationally playable in problems like Table 8.2 cite above table will violate Exit Principle. Think about what they will say Table 8.4.




Table 8.4: The Early Choice decision.





	
	PUp
	PMixed
	PDown



	Up
	2
	3
	0



	Down
	0
	3
	3










In this problem, PUp means that both demons predict Up, PDown means that they both predict Down, and PMixed means that one predicts one, and one the other. This possibility is arbitrarily improbable, and the two strategies have the same expected return given M in any case, so we can ignore it. So really this game comes to Table 8.5.




Table 8.5: The Early Choice decision simplified.





	
	PUp
	PDown



	Up
	2
	0



	Down
	0
	3










Now presumably if one prefers Up in above table, it is because one prefers Up in any game like Table 8.6 Table below where x > y > 0.




Table 8.6: General coordination game.





	
	PUp
	PDown



	Up
	x
	0



	Down
	0
	y










How could it be otherwise? Given expectationism, it’s not like there is anything special about the numbers 4 and 3. But anyone who endorses this policy will play Down Table 8.5 and so, presumably, in Table 8.4. And that means they will violate Exit Principle.

The only view that is consistent with Exit Principle in cases like Table 8.6 is that both Up and Down are permissible. And since in any such case, improving Up or Down be a tiny amount wouldn’t materially change the case, they must both be permissible after small sweetenings. So, given Exit Principle, the only viable theories are indecisive.

Exit Principle also offers a response to some intuitions that have led people to question CDT in recent years. Table 8.7 is an example that Jack Spencer (2023) used to model the kind of case that’s at issue. As he notes, it is similar to the psychopath button case (Egan, 2007), the asymmetric Death in Damascus case (Richter, 1984), and other puzzles for CDT.




Table 8.7: Frustrating Button (from Spencer (2023)).





	
	PUp
	PDown



	Up
	10
	10



	Down
	15
	0










Apparently the common intuition here is that that Up is the uniquely rational play. Note though that if we embed Frustrating Button in an exit problem, as in Table 8.8, the intuitions shift.




Table 8.8: An exit problem with Frustrating Button in round 2.







(a) Exit Parameters





	Exit Payout
	-50



	Pr(Exit | PUp)
	0.8



	Pr(Exit | PDown)
	0
















(b) Frustrating Button





	
	PUp
	PDown



	Up
	10
	10



	Down
	15
	0



















The Early Version of Table 8.8 is Table 8.9.




Table 8.9: Early Version of Table 8.8.





	
	PUp
	PDown



	Up
	-38
	10



	Down
	-37
	0










 

And if there is an intuition here, it is that it’s better to choose Down rather than Up.3 This violates Exit Principle, and it seems incoherent to say that one would choose Down in this game, when Down just means playing Down in round 2, and if one were to reach round 2, one would prefer Up.

Exit Principle can also be used to argue against the non-expectationist theory offered by Lara Buchak (2013), but that argument is more complicated, and I’ll leave it to Appendix Two.







1. For much more on the philosophical importance of Stag Hunts, see Skyrms (2004).



2. To be sure, it’s not entirely clear how to even state the Sure Thing Principle in the framework of causal ratificationism. Ratificationism does not output a preference ordering over options; it just says which options are and are not choice-worthy. And exactly how to translate principles like Sure Thing that are usually stated in terms of preference to ones in terms of choiceworthiness isn’t always clear. One consequence of this is that I don’t want to lean on Sure Thing as a premise. Another is that ratificationism isn’t really subject to the objections that Gallow (n.d.) makes to theories that endorse Sure Thing, since the version of Sure Thing he uses is stated in terms of preferences. (Officially, ratificationism is ‘unstable’ in his sense because it doesn’t output a preference ordering over unchosen options; that doesn’t seem like a weakness to me.)



3. The theory offered in Spencer (2021) agrees with intuition here.





9 Selection


9.1 Selection Functions

Some decision theories, most notably EDT, output a valuation of all possible choices. From that valuation a preference function over choices can be easily generated; choices that are more highly valued are preferred to those that are less highly valued. Indeed, that preference ordering will be a total preorder. Other theories, especially the theories that recommend Gathering in Stag Decisions, do not output valuations of all choices, but they do output a preference ordering over all choices. In some cases that is a total preorder, but often it is simply a preorder. Still, they share with EDT the idea that a decision theory outputs a preference ordering over the choices.

GDT rejects this assumption. A decision theory says what the idealised chooser will choose, given some options. It does not go on to say that the chooser will think this option is 7th best, and that one is 9th best. Such further claims would be pointless because they don’t explain behaviour, and explaining behaviour is the aim of the project. One does not behave differently whether this or that unchosen option is preferred.

So we should think of GDT as outputting not a preference function, but a choice function in the sense of Samuelson (1938), Chernoff (1954), and Sen (1971). This is consistent with the practice in game theory. Think about the use of solution concepts like subgame perfect equilibrium (Bonanno, 2018, sec 4.4) or Perfect Bayesian equilibrium (Bonanno, 2018, ch. 13). These describe which choices are acceptable in dynamic situations. But they don’t even purport to offer a ranking over the unchosen options. All the theory says is that given a situation, these options are choice-worthy, and these ones are not.

The algorithms one uses to solve games using these concepts don’t suggest that this or that unchosen option is better than some others. If one option is guaranteed to be epsilon worse than the best option in all circumstances, then it will be the first one eliminated by most algorithms, even if in some good sense it is second-best.

That doesn’t mean that anything goes when it comes to choice. We can put some substantive constraints on what a choice function looks like. Following standard practice, when X is a set of options, let c(X) be the set of choice-worthy options in X. (Call this the ‘choice set’.) One plausible principle is that if Y is a subset of X, i.e., it is generated from X by deleting alternatives, then anything in c(X) that is also in Y is in c(Y). That is, deleting options does not turn something choice-worthy into something non-choice-worthy, unless it is indeed deleted. This is called principle α\alpha by Sen (1971), though it is often also (following Moulin (1985)) called the Chernoff condition. This name is used because it is equivalent to one of Chernoff’s postulates for choice. And this principle is important in game theory, for without it the method of solving games by deleting rejected options would not make sense.



9.2 Generating Preference Orderings

I made a lot of assertions in Section 9.1 that one might reject. Among other things, one might reject the idea that a selection function does not determine a preference ordering. After all, there are many ways to get from a choice function to a preference ordering. Here is one such way.


	If o1 ∈\in c(X) and o2 ∉\notin c(X), then o1 is strictly preferred to o2.

	Otherwise, o1 is not strictly preferred to o2.



There’s nothing wrong with point 1 here, but point 2 is implausible. Consider the following ‘game’. Chooser is presented three options: a $20 bill, a $10 bill, and a $5 bill, and told they can choose any one of them. Their choice set is just the $20 bill. But, contra point 2, they strictly prefer the $10 bill, to the $5 bill.

So if we want to turn a selection function into a preference ordering, we need something more sophisticated than this.

I could at this point run through all the possible ways of generating a preference ordering from a selection function, and argue that none of them are adequate. But I suspect this approach would suffer from three problems.

First, there would be enough different things to try that every reader would find my response to at least one of them unconvincing.

Second, it’s not really true that I could survey every response one might take, and a moderately enterprising reader would come up with one I’d missed.

Third, and this is the most important, one might agree with everything I say about the problems of each attempt, and conclude “Ah well, all the worse for the selection function approach.”. If one is convinced that preference orderings are needed, and I’ve argued successfully that every way of generating them from selection functions fails, then one will conclude that decision theory needs more than selection functions. I need a way to convince you that the right conclusion to draw here is that we don’t in fact need preference orderings.



9.3 Counterfactual Selections

To that end, let’s start with a slightly different way of generating preference orderings from selection functions.


	If o1 ∈\in c({o1, o2}) and o2 ∉\notin c({o1, o2}), then o1 is strictly preferred to o2.

	Otherwise, o1 is not strictly preferred to o2.



This approach has several nice features. First, it gets the case of the three bank notes correct. Second, it captures something intuitively right about what it means to say that one option is preferred to another; it would be chosen over it in a binary choice. Third, it promises to have some explanatory power, as the following case indicates.

Chooser has two unpainted wooden toys, a bus and a truck. Chooser’s job is to paint one of them red, and the other blue, and offer them to Child. Child will then pick one. Chooser will get $2 if Child picks the blue one, and a further $1 if Child picks the bus. Chooser just cares about money, and does not care about Child’s preferences. Child’s preference ordering over toys is common knowledge, and it is:


Blue truck > red bus > blue bus > red truck



Chooser will disappoint Child by painting the bus blue, and the truck red, and getting the $3. And the explanation for this is that if they painted things the other way around, Child would select the truck, and Chooser would only get $2.

So it looks like we need choices over counterfactual settings to explain behaviour. It’s because Child would choose blue truck from the options {blue truck, red bus} that Chooser paints the bus blue and the truck red. And this in turn motivates the thought that choices from restricted option sets is exactly the kind of thing we should appeal to in explanations.

Everything I’ve said so far in this section is plausible, but, I hope to convince you, ultimately mistaken. I’ll briefly say why there is a different explanation for what happens in this game, and then spend the rest of the chapter arguing that choices from restricted sets are not something we should include in explanations.

In the Chooser-Child game, we should think of both players as adopting one or other kind of strategy. As noted back in [include cross-ref here] a strategy includes a plan for what to do at every node in the tree where it is one’s responsibility to choose. So child has to plan for what to do whichever choice Chooser makes. Given their preferences, the only rational plan is to always take the blue toy. And given that, Chooser’s only rational play is to paint the truck blue, and hence the bus red. That pair of strategies is the unique sub-game perfect equilibrium of the game.

Crucially, this explanation just appeals to the strategy that Child adopts, and why it is preferable to the other three strategies they might have adopted. It doesn’t appeal at any point to Child’s preferences over the three unadopted strategies. So once we are clear about what the options are, i.e., strategies, there is a possible explanation of the outcome of the game that makes no appeal to preferences over unchosen options.

In the rest of this chapter I’ll run through three reasons for thinking that we should not in fact use things like c({o1, o2}) in our explanations of what happens in games. As in the Chooser-Child example, I’ll pay particular attention to what happens in dynamic games.



9.4 What is Held Fixed?

The first puzzle concerns figuring what c({o1, o2}) even means. Is it what Chooser would select if those were the only options and (a) everything else is held fixed; or (b) it is common knowledge that those are the only choices, and everything else is held fixed? These two can come apart, as when Chooser is Row in Table 9.1.




Table 9.1: Which is better for Row: B or C?





	
	A
	B
	C





	A
	7,1
	2,0
	6,0



	B
	1,0
	1,1
	5,0



	C
	4,0
	0,0
	3,1










The only ratifiable option is A, and that’s pretty clearly what Chooser will play. But which will they choose if B and C are the only options? Well, that depends on what is held fixed.

As things stand Chooser will expect that Column will play A, so holding everything fixed, they prefer C to B. After all, it gets 4 and B only gets 1.

If it was common knowledge that B and C were the only choices, then Column will not play A, since it is now weakly dominated, and given that, B strongly dominates C. So Chooser will play B.

So the proposal needs to be refined to make clear what c({B, C}) even is in this context. Whichever way that is done, the refined concept seems more ad hoc, and a little less explanatorily powerful, than the initial concept did.



9.5 Mixed Strategies and Restricted Choice

Recall The Frustrator from Section 4.1.




Table 9.2: The Frustrator





	
	PA
	PB
	PX





	A
	0
	100
	50



	B
	100
	0
	50



	X
	40
	40
	40










I argued that the only rational choice there is a 50/50 mixture of A and B. But if we say that c is defined over arbitrary sets of possible choices, we might go on to ask, which is the best pure strategy here? Put another way, what is c({A, B, X})?

That question has no sensible answer. The point of c is that it is what idealised, perfectly rational, Chooser will select. And idealised, perfectly rational, Chooser cannot possibly be facing just that menu of choices. To say they are facing this choice is to say that they are not perfectly rational. And that means that c is not defined.



9.6 Dynamic Games and Restricted Choice

The argument in Section 9.5 appealed to my earlier arguments about mixed strategies. There is another version of this argument that makes no such appeal. Consider the following two-stage game.


	At stage 1, a dollar bill will be placed in front of Chooser. Their option is to take it or leave it.

	Whatever they do at stage 1, at stage 2, a new dollar bill will be placed in front of Chooser. Their option is to take it or leave it.



At the end, Chooser will have some amount between $2 and $0. Chooser has eight possible strategies, which we’ll denote as XYZ, where X is T if they will take at stage 1, and L otherwise; Y is T if they will take at stage 2 after taking at stage 1, and L if they will leave at stage 2 after taking at stage 1; and Z is T if they will take at stage 2 after leaving at stage 1, and L if they will leave at stage 2 after leaving at stage 1.

The only rational choice here is TTT. That is, given the eight options, Chooser will select TTT. Now we might ask ourselves a new question. If TTT is unavailable, what will Chooser select?

If we think of this as a static game, the answer is easy. Choosing TTL gets $2, all the other options get less than $2, so TTL is best.

But the game is not a static game, it is a dynamic game. And there isn’t any dynamic game where it is meaningful to ask what Chooser will do if TTT is not available. What things can Chooser do or not do under the assumption that TTT is not available? There isn’t a natural answer to this which respects the dynamic nature of the game.

That’s the general case for dynamic games. In general, dynamic games have structural constraints on what choices are available. If some choices are available, some others must be available as well. If TTL is available, TTT must be available too. After all, there is no instruction you can give Chooser which implements a differential restriction on these strategies.

So in general we should not think that if c(S) is meaningful, then c will also be defined for arbitrary subsets of c. And that means we shouldn’t think that c({o1, o2}) is in general well-defined. So we shouldn’t think that it is how preference orderings are defined given selection functions. And, relatedly, we shouldn’t think that preferences over non-chosen options are explanatorily important.





10 Substantive

Here are two interesting characters. Piz wants to put mud on his pizza. This won’t bring him joy, or any other positive emotions; he has a non-instrumental desire for mud pizza. Za wants to eat a tasty pizza, and believes that putting mud on his pizza will make it tasty. There is a long tradition of saying that the point of philosophical decision theory is not to evaluate beliefs and desires, but merely to say what actions those beliefs and desires do or should issue in. On such a view, both Piz and Za should (or at least will) put mud on their pizzas. Here is David Lewis expressing such a view.1


The central question of decision theory is: which choices are the ones that serve one’s desires according to one’s beliefs? (Lewis, n.d.: 472)



We need one caveat on this. Philosophical decision theories typically do not issue verdicts unless the chooser satisfies some coherence constraints. So it’s not quite that the theory says nothing about what the beliefs and desires should be. It’s that it says nothing substantive about what the beliefs and desires should be. Purely structural constraints, like transitivity of preferences, or belief in the law of excluded middle, may be imposed.

The point of this chapter is to argue that this is not enough. Decision theory is a theory of what rational agents do. And rational agents are rational; they don’t have beliefs that are unsupported by their evidence. I also suspect they don’t have bedrock desires for saucers of mud, but here I’ll focus on the constraints about belief.

The opposing view is that decision theory is part of the theory of structural rationality. Not doing what maximises expected utility according to one’s beliefs is like not believing the logical consequences of one’s beliefs. It is, according to the theorist of structural rationality, bad even if the initial beliefs are bad.

I’m going to offer two arguments against this. First, I’ll argue that this notion of structural rationality, if it is even coherent, is not philosophically interesting. This is a big debate, and I don’t suspect I’ll convince many people of something this sweeping.2 Hopefully I’ll convince some, but I don’t want to rest the argument on these general considerations. So second, I’ll focus more on decision theory, and argue that reflecting on an important case from the game theory literature, the beer-quiche game due to Cho & Kreps (1987), gives us reason to deny that decision theory is part of the theory of structural rationality.


10.1 Against Structural Rationality

In this section I’ll note some general reasons for scepticism about this use of the substantive-structural distinction. One obvious reason is that Piz and Za do not look like rational choosers.

Another reason is that distinguishing structural from substantive rationality this draws distinctions where we should be seeing similarities. To see this, consider two more characters: Cla and Sic. Both of them have taken classes in classical statistics, but only skimmed the textbooks without attending to the details. Cla came away with the belief that any experiment with a P value less than 0.05 proved that its hypothesis is true. Sic came away with a standing disposition to belief the hypothesis whenever there was an experiment with a P value less than 0.05. Cla is incoherent; there is no possible world where that belief is true. Sic is coherent; any one of their beliefs could be true. It’s just they just have a disposition to often form substantially irrational beliefs. Personally, I don’t think the difference between Cla and Sic is important enough to be philosophically load bearing.

Lastly, it has proven incredibly hard to even define what makes a norm structural. The most important recent attempt is in Alex Worsnip’s book Fitting Things Together: Coherence and the Demands of Structural Rationality (Worsnip, 2021). Here’s his definition:


Incoherence Test. A set of attitudinal mental states is jointly incoherent iff it is (partially) constitutive of (at least some of) the states in the set that any agent who holds this set of states has a disposition, when conditions of full transparency are met, to revise at least one of the states. (Worsnip, 2021: 132)



This won’t capture nearly enough. If probabilism is correct, then non-probabilists about uncertainty like Glenn Shafer (1976) endorse incoherent views. If expectationalism is correct, then non-expectationalist decision theorists, like Lara Buchak (2013), endorse incoherent views. If classical logic is correct, then intuitionist logicians like Crispin Wright (2021) are incoherent. Those three all seem to meet Worsnip’s conditions of full transparency, and don’t seem disposed to revise their beliefs.

Maybe this is just a problem with Worsnip’s definition, but it is also a reason to be sceptical that there even is a distinction to be drawn here. Wooram Lee (n.d.) raises some different challenges for Worsnip, and offers a rival theory. But for that theory to work, Lee requires that when a dialethist proposes to solve the Liar Paradox by saying the liar sentence is both true and not true, they are being insincere. The idea is that sincerely saying p requires believing p and not believing its negation. But this simply isn’t part of the concept of sincerity. As much as I find the dialethist solution to the Liar implausible, I think the dialethists I know have been perfectly sincere in offering it.

Maybe there is some theory of coherence waiting to be found, but the search for one feels like a degenerating research program.3



10.2 The Beer-Quiche Game

Even if the substantive/structural distinction can be made precise, and shown to do philosophical work, it won’t track the notion game theorists most care about. We can see this with a version of the beer-quiche game developed by Cho & Kreps (1987). In this section I’ll translate that game into decision-theoretic language, and say why it shows that decision theory should care about substantive, and not just structural, rationality.

There are five steps in the game. (I’m going to call it the beer-quiche game to refer back to Cho and Kreps, and to distinguish it from the similar game earlier that is shown in Figure D.1.)


	A coin will be flipped, landing Heads or Tails. It is biased, 60% likely to land Heads. It will be shown to Chooser, but not to Demon.

	Chooser will say either Heads or Tails.

	Demon, knowing what Chooser has said, and being arbitrarily good at predicting Chooser’s strategy4. will say Heads if it is more probable the coin landed Heads, and Tails if it is more probable the coin landed Tails.5

	Chooser is paid $30 if Demon says Heads, and nothing if Demon says Tails.

	Chooser is paid $10 if what they say matches how the coin landed, and nothing otherwise. This is on top of the payment at step 4, so Chooser could make up to $40.



If you prefer things in table form, the payouts of the game are in Table 10.1.




Table 10.1: The beer-quiche game in table form.





	Coin
	Chooser
	Demon
	Dollars





	H
	H
	H
	40



	H
	H
	T
	10



	H
	T
	H
	30



	H
	T
	T
	0



	T
	H
	H
	30



	T
	H
	T
	0



	T
	T
	H
	40



	T
	T
	T
	10










Or in graphical form the game looks like Figure 10.1.










Figure 10.1: Tree diagram of the beer-quiche game.








What will Chooser do? There are two coherent things for Chooser to do, though each of them is only coherent given a background belief that isn’t entailed by the evidence.


	Chooser could say Heads however the coin lands. Demon gets no information from Chooser, so their probability that the coin landed Heads is 0.6, so they will say Heads. Further, Chooser believes that if they were to say Tails, Demon would say Tails, so saying Heads produces the best expected return even after seeing the coin.

	Chooser could say Tails however the coin lands. Demon gets no information from Chooser, so their probability that the coin landed Heads is 0.6, so they will say Heads. Further, Chooser believes that if they were to say Heads, Demon would say Tails, so saying Tails produces the best expected return even after seeing the coin.



While both of these are coherent, there is something very odd, very unintuitive about option 2. I guess we’ve been trained to be sceptical when philosophers report intuitions, but here we have a very large data pool to draw on. Cho and Kreps reported essentially the same intuition. Their paper has been cited tens of thousands of times, and I don’t think this intuition has been often questioned. Option 2, while coherent, is unintuitive. It is the kind of option that the theory of rationality behind game theory, and behind decision theory, should rule out.

But what about it is incoherent? One might think it is because it has an expected return of $34, while option 1 has an expected return of $36. But we showed in section Indecisive ref that using expected returns to choose between coherent options leads to implausible results. Moreover, if you change the payout in the bottom row to $50, the intuition doesn’t really go away, but the expected return of option 2 is now $38; higher option 1’s payout.6 Alternatively, one might think it is because option 2 requires Chooser to believe a counterfactual that is not entailed by the evidence. But option 1 also requires Chooser to believe a counterfactual that is not entailed by the evidence. That can’t be the difference between them, but it is closer to the truth.

What Cho and Kreps argue, persuasively, is that the difference between the options is that in one case the counterfactual belief is reasonable, and in the other it is unreasonable. Assume Chooser plans to adopt option 1. But when it becomes time to play, they change their mind, and say Tails. What would explain that? Not the coin landing Heads - given their plan, they will get the maximum possible payout by sticking to the plan (assuming Demon has done their job). No, the only plausible explanation is the coin landed Tails, and Chooser was (foolishly) chasing the extra $10. In option 1, Chooser believes the counterfactual that’s grounded in Demon picking an explanation that makes sense. What about in option 2? Here, everything is back to front. If Chooser is ever going to depart from their plan, it’s when the coin lands Heads. Then Chooser might chase the extra $10 by saying Heads. But Chooser has to believe that were they to depart from the plan, Demon would draw the explanation that makes no sense whatsoever, that they gave up on their plan even though it was about to lead to the best possible outcome. This makes no sense at all. And in fact it makes less sense the more you increase the payout in line 8.

So that’s why decision theory requires substantive rationality. The right decision theory should say to take option 1. And the argument against option 2 is not that it is incoherent, but that carrying it out requires believing Demon will do things that make no sense given Demon’s evidence. It is substantive, not structural, rationality that rules out option 2. And yet, as the game theorists have insisted, option 2 must be ruled out. So decision theory should be sensitive to substantial rationality.







1. I’m using Lewis as an example of the orthodox view that decision theory does not care about whether beliefs and desires are substantively rational, just that they are coherent. But note that Lewis has an idiosyncratic view in the neighbourhood of this one. He denies that the point of decision theory is to guide or judge action. He thinks that decision theory is primarily description, not normative. I agreed with that in Chapter 2. But he thinks its descriptive role is primarily in defining belief and desire; I think it is in explaining social phenomena.



2. My own book length contribution to this debate is in Normative Externalism (Weatherson, 2019).



3. See also Heinzelmann (n.d.) for a different set of reasons to be sceptical that there is a notion of coherence that can do the work its philosophical defenders want.



4. That is, what Chooser will do if Heads, and what they will do if Tails.



5. If both are equally likely, Demon will flip a fair coin and say how it lands.



6. I believe if you change that payout to $65, the various regret based theories I discussed in Chapter 8 also start preferring option 2. But applying these theories to complex cases is hard, so I’m not quite sure about this.





11 Weak Dominance, Once

An option a weakly dominates another option b if a is at least as good as b in all states, and better than b in some states. Just what role weak dominance has in decision theory is one of the most unsettled topics in game theory. There are three natural positions, and all of them are occupied. One is that weak dominance is of no significance. A second is that ideal agents do not choose weakly dominated options, and that’s the only role weak dominance has. And a third is that ideal agents do not choose options that are eliminated by an iterative process of deleting weakly dominated strategies. I’m going to argue in favour of the middle position. I’m not going to try to argue this is the standard game-theoretic move; as I said, I think you can find prominent support for all three options. To argue for the middle position requires making two cases: first, that weakly dominated options are not ideally chosen; and second, that options that would be eliminated by iterative deletion of weakly dominated options are ideally chosen. I’ll argue for these in turn.


11.1 Avoid Weakly Dominated Options

Start with Table 11.1; what would ideal Chooser do?




Table 11.1: A ratifiable, weakly dominated, option.





	
	PA
	PB





	A
	1
	1



	B
	0
	1










On the one hand, B is ratifiable, as long as Demon is sufficiently reliable. If Demon will in fact get the predictions right, B gets a return of 1, and had Chooser played A, they would have still received 1. So they would not regret playing B, so by ratifiability it is fine to play it. Against this, there are two reasons to not play B.

First, if we don’t say that Demon is perfectly accurate, but only that their accuracy is arbitrarily close to being perfect, the argument that B is ratifiable doesn’t go through. It has been argued by game theorists that we should always allow for the possibility that one or other player in a game will make some kind of performance error. This idea is at the heart of Reinhard Selten’s notion of trembling hand equilibrium (Selten, 1975), and Roger Myerson’s notion of proper equilibrium (Myerson, 1978). If a strategy would not make sense if the probability of an error by one or other player was positive, even if it was arbitrarily low, it should not be played. Since B only makes sense if the probability of an error by Demon is 0, that means B should not be played.

Second, playing B involves taking on an uncompensated risk. It might be that we don’t have a good way of capturing within probability theory just what this risk is. Perhaps you think that it makes sense to say that Demon is correct with probability 1 without this raising questions about backwards causation. Still, in some sense B has a risk of failure that A lacks. One should not take on a risk without some compensation. So one should not play B in this case. This, I think, is the most persuasive argument against B.1



11.2 Against Iterative Deletion

If it is good to remove weakly dominated options, then one might think it follows straight away that it is good to keep doing this.2 Think about Table 11.2.




Table 11.2: An example of iterated weak dominance.





	
	PU
	PD
	PX





	U
	1
	1
	0



	D
	0
	1
	1



	X
	0
	0
	1










In Table 11.2, X is weakly dominated by D. So it shouldn’t be played. But if X isn’t played, then PX is weakly dominated by both PU and PD. Demon can’t make a correct prediction by playing PX, since by hypothesis it won’t be played, so it can’t be better than PU or PD. But both PU and PD can be better than PX. So PX is now weakly dominated. So let’s remove it as well. If both X and PX are deleted, we’re back to Table 11.1, in which we said Chooser should play U.

So does it make sense to say that U is the only play in Table 11.2? I think not, for three reasons.

First, as Bonanno (2018: 37) points out, in general iterative deletion of weakly dominated strategies is not a well defined decision procedure. It turns out that in two player games, the order that weakly dominated strategies are deleted can affect which choices one ends up with. There are ways of fixing this problem, by specifying one or other order of deletion as canonical, but they all feel somewhat artificial.

Second, the reasons we gave for avoiding the weakly dominated option in Table 11.1 simply don’t carry over to Table 11.2. In the latter game, D is not an uncompensated risk. It’s true that D loses if Demon makes an incorrect prediction and plays PU. But U loses if Demon makes an incorrect prediction and plays PX. Unless one thinks that PX is particularly unlikely to be played, it seems U and D are just as risky as each other. So both of them look like rational plays.

Third, iterative deletion of weakly dominated strategies (combined with the dual mandate approach to dynamic choice) leads to a single solution to the money burning game described by Ben-Porath & Dekel (1992). The money burning game has two players, and two stages. At stage 1, Column will have the choice to burn or not burn $20. The burning will be public, so Row will see what Column does, or does not do. At stage 2, Row and Column will play the simultaneous move game in Table 11.3.




Table 11.3: The second stage of the money burning game





	
	A
	B





	A
	$10, $40
	$0, $0



	B
	$0, $0
	$40, $10










Here is one way to think about the game. I’m going to number the steps here so we can refer back to them later.


	It would be irrational to burn the money and play B, since that results in a maximum possible payout to Column of -$10, when any strategy that involves not burning the money results in a minimum payout of $0.

	So Row can infer that if Column burns the money, they are playing A. So if Column burns the money, Row would maximise their own return by also playing A.

	Since Column can figure out everything in steps 1-2, it follows that burning the money will get them a return of $20, while playing B gets at most $10, so it is irrational to ever play B.

	Since Row can figure out steps 1-3, it follows that Row knows that Column will play A, hence it is always rational for Row to play A.

	Hence Column does not need to burn the money, since Row will play A, and hence playing A without burning will get them $40.



So this looks like an interesting result. By just giving Column the option of burning the money, we guarantee that Column will get their best possible outcome, even though they don’t actually use that option. We’ll come back to whether this reasoning works. (Spoiler alert: I’m going to endorse an existing objection to it.)

Let’s look at the argument in something like strategic form. For simplicity, I’m going to assume Column has four strategies: whether to burn or not burn, crossed with whether to play A or B in Table 11.3. Strictly speaking, we should distinguish strategies that differ in what Column is disposed to do in the non-taken option at stage 1, but such distinctions don’t matter to the analysis, and end up cluttering the table. Row has four strategies: two choices for what to do if Column burns the money, crossed with two choices for what to do if Column keeps the money.

So as not to confuse the Burning with playing option B, I’ll write L for Lighting the money on fire, and K for Keeping the money. So Column’s strategies will be one of L and K, followed by one of A and B. For Row, I’ll write XY for the strategy of doing option X if Column keeps the money, and option Y if Column lights it on fire. So AB is the strategy of doing A iff they don’t see the money on fire. Given that, here is the payout table. (To reduce clutter, I’ll write the payouts in dollars, but will leave off the dollar signs.)




Table 11.4: Simplified strategic form of the money burning game.





	
	KA
	KB
	LA
	LB





	AA
	10, 40
	0, 0
	10, 20
	0, -20



	AB
	10, 40
	0, 0
	0, -20
	40, -10



	BA
	0, 0
	40, 10
	10, 20
	0, -20



	BB
	0, 0
	40, 10
	0, -20
	10, -10










We can use weak dominance to then reason as follows.


	LB is strongly dominated by both KA and KB, so it won’t be played.

	If LB is deleted, then AB is weakly dominated by AA, and BB is weakly dominated by BA, so both AB and BB can be deleted.

	Without AB and BB, LA strongly dominates KB, so KB can be deleted.

	Without KB and LB, AA weakly dominates BA, so BA can be deleted.

	Without AB, BA and BB, KA strongly dominates LA, so LA can be deleted.



The result is that only AA and KA remain, and that’s the solution to the game. Note that it’s not just that we’ve got the same result by thinking through the strategic form of the game as we’d reached by the earlier dynamic analysis, we’ve reached it in exactly the same way. Whatever one thinks in general about strategic analysis of dynamic games, in this case it seems the two analyses are as good as each other.

That’s bad news for iterated weak dominance, because in the dynamic argument, step 2 is bad. That implies that in the strategic argument, which uses weak dominance, step 2 is also bad. Notably, that’s the very first step where iterated weak dominance is used, so we have strong evidence that iterated weak dominance is the culprit here.

The problem with step 2, as Stalnaker (1998) points out, is that it confuses indicative and subjunctive conditionals. What Row knows at that point is the negation of a conjunction: it’s not the case that Column will burn the money and play B. Arguably, that implies the indicative conditional: If Column burns the money, they don’t play B. But what is needed for the next step is the subjunctive: If Column burned the money, they would not play B. And that doesn’t at all follow from the negated conjunction.

Maybe you don’t agree that a subjunctive conditional is what Row needs this point. That part of Stalnaker’s analysis is unnecessary for the main argument. It’s enough to note that this negated conjunction can’t be enough to derive any inferences about what to do if Column burns the money. That’s because by the end of the derivation, Row knows that column (if rational) won’t burn the money. So here’s another negated conjunction that they know: it’s not the case that Column will burn the money and play A. They know this because they know the first conjunct is false, and they are (on standard assumptions) logically omniscient. Since Row’s knowledge is symmetric in this respect, they know both the negated conjunctions, Column won’t burn and play A, and, Column won’t burn and play B, knowledge of one of them can’t motivate an asymmetric attitude to what Column will do.

The five-step argument is self-undermining in a related way. It concludes that if Column is rational they won’t burn the money. But it gets there by making substantive inferences about what Column will do if they rationally burn the money. There are no such substantive inferences to draw; rational Column will (according to the argument) not burn the money, so once Row sees the money on fire, they should infer Column is irrational, and stop making any inferences about what Column will or won’t do based on the assumption of rationality.

From all this, I conclude that iterated weak dominance reasoning rests on a fallacy. I agree with Stalnaker’s diagnosis that the fallacy is confusing indicative and subjunctive conditionals, but as I’ve argued in the last two paragraphs, there is independent reason to accept Stalnaker’s claim that there is a fallacy involved even if you don’t accept his diagnosis.



11.3 Back to Strong Dominance

This argument might, for some readers, trigger guilt by association concerns. If initially appealing reasoning like the 1-5 inference in Section 11.2 is wrong, might it also be that iterated strong dominance reasoning rests on a fallacy?

I suspect that concern is at least half-right; some informal presentations of iterated strong dominance reasoning probably do commit exactly the same fallacy. But it turns out not to matter; we have independent reason to accept iterated strong dominance

The reason comes from the theorem of Pearce’s that I mentioned back in Section 4.1, in the context of discussing The Frustrator. Pearce goes on to show something stronger than what I described there, but it needs a little more terminology to state it.

Say a strategy S in a two player game is a best-response1 iff there is some probability distribution Pr over the other player’s strategies such that given Pr, no strategy available to the player has a higher expected return than S does.

Say a strategy S in a two player game is a best-responsek+1 iff there is some probability distribution Pr over the other player’s strategies such that (a) Pr only assigns positive probability to the other player choosing strategies which are best-responsesk, and (b) given Pr, no strategy available to the player has a higher expected return than S does.

Finally, say that a strategy S is rationalisable iff for any n, it is a best-responsek.

It is very intuitive that given common knowledge of rationality, each player should play rationalisable strategies. Playing rationalisable strategies just means having answers to all of the following questions.


	Why are you playing S? Because my credence distribution over the other player’s strategies is Pr0, and given Pr0, S maximises expected returns.

	Why is your credence distribution over the other player’s strategies Pr0? Because for every strategy that Pr0 gives positive probability to, there is some probability distribution Pr1 that they might have over my strategies such that, given Pr1, that strategy is optimal.

	Why should we think Pr1 is their probability distribution? Because for every strategy of mine that Pr1 gives positive probability to, there is some probability distribution Pr2 such that that strategy is optimal given Pr2.



This line of questioning could go on indefinitely. Presumably Pr2 isn’t defined over any old things the other player might play. But if the original strategy is rationalisable, it will give positive probabilities to things that it would make some sense for the other player to play. And so on indefinitely.

This, ultimately, is why I think dominance reasoning, and in particular iterated dominance reasoning, should be incorporated into our decision theory. Using dominance reasoning is a somewhat convenient shorthand for what we should be doing, namely finding rationalisable strategies.

To be sure, I think we should do somewhat more than find rationalisable strategies. We should also find strategies that are not weakly dominated (as argued in Section 11.1), and which are substantively rational (as argued in Chapter 10). But the first necessary step is to remove the non-rationalisable strategies.



11.4 Summary

So I conclude that we just need one round of deleting weakly dominated options to get rid of irrational plays. D is irrational in Table 11.1, but not in Table 11.2. The reasons for not iterating weak dominance reasoning do not apply to strong dominance reasoning, and iterated strong dominance reasoning leads to the same results as reasoning that is unimpeachable, namely finding rationalisable strategies.







1. This paragraph is somewhere between heavily influence by, and a notational variant on, the argument in section 3 of Stalnaker (1999).



2. This suggestion is made by, for example Hare & Hedden (2015).





12 Conclusion

TK

% Given all that, here is the positive theory, what I’m calling Gamified Decision Theory (GDT). The core is that rational choices are ratifiable. That is, they maximise expected utility from the perspective of someone who chooses them. Formally, that means that in a particular problem, with choices o1, …\dots, om, and causally independent states s1, …\dots sn, a choice o is rational iff there is some probability function Pr that is a rational credal distribution over the s after choosing o, and such that for all oj, Σ\SigmaPr(si)V(osi) ≥ Σ\SigmaPr(si)V(ojsi). % % There are two extra clauses. First, o is choiceworthy only if it is not be weakly dominated by any other option. Second, if one is making a series of decisions in a tree, and one knows that one will be rational and not change one’s preferences throughout, then both the decisions one makes at any given time, and the set of decisions one collectively makes, must satisfy all the other conditions of rational choice. That is, they must be ratifiable and not weakly dominated. % % The big advantage of this theory is that it satisfies the nine conditions I mentioned at the start, and that it is consistent with Exit Principle. These turn out to be very sharp constraints on a theory. For example, any theory that associates some number with each choice, and says to maximise the number, will violate the Indecisiveness constraint. Any theory that simply the chooser’s credences as given will violate the Substantiveness constraint. The vast bulk of decision theories on the market in philosophy do at least one of these two things, and typically both. So we have strong reason to prefer GDT to them. % % GDT does require that mixed strategies are available to choosers, on pain of saying that a lot of decision problems are dilemmas. That is not a problem for GDT, since ideal agents can perform mixed strategies. It is a shortcoming to not be able to perform them, and ideal agents don’t have these kinds of shortcomings. But it does suggest an important research program in working out how GDT should be altered for agents who lack one or other idealisation. In fact it suggests two research programs: a descriptive one, setting out what choosers who don’t satisfy one or other idealisation in fact do; and a normative one, setting out what these choosers should do. But those projects are for a very different paper.[^33] % % [^33]: Thanks to many people for conversations on these topics, especially Dmitri Gallow and Ishani Maitra, and audiences and ACU and UBC, and students in my group choices classes at University of Michigan.




References



Ahmed, Arif. (2012). Push the button. Philosophy of Science, 79(3), 386–395. doi:10.1086/666065



Ahmed, Arif. (2014). Dicing with death. Analysis, 74(4), 587–592. doi:10.1093/analys/anu084



Ahmed, Arif. (2020). Equal opportunities in newcomb’s problem and elsewhere. Mind, 129(515), 867–886. doi:10.1093/mind/fzz073



Akerlof, George. (1970). The market for "lemons": Quality uncertainty and the market mechanism. Quarterly Journal of Economics, 84(3), 488–500. doi:10.2307/1879431



Alcoba, Natalie. (2023). In argentina, inflation passes 100% (and the restaurants are packed). The New York Times, June 19, 2023. Retrieved from https://www.nytimes.com/2023/06/19/world/americas/argentina-inflation-peso-restaurants.html



Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’ecole americaine. Econometrica, 21(4), 503–546. doi:10.2307/1907921



Arntzenius, Frank. (2008). No regrets; or, edith piaf revamps decision theory. Erkenntnis, 68(2), 277–297. doi:10.1007/s10670-007-9084-8



Barnett, David James. (2022). Graded ratifiability. Journal of Philosophy, 119(2), 57–88. doi:10.5840/jphil202211925



Barta, Sergio, Raquel Gurrea, and Carlos Flavián. (2023). Consequences of consumer regret with online shopping. Journal of Retailing and Consumer Services, 73, 103332. doi:10.1016/j.jretconser.2023.103332



Ben-Porath, Elchanan, and Eddie Dekel. (1992). Signaling future actions and the potential for sacrifice. Journal of Economic Theory, 57(1), 36–51. doi:10.1016/S0022-0531(05)80039-0



Blackwell, David. (1951). Comparison of experiments. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 2(1), 93–102.



Bonanno, Giacomo. (2018). Game theory. Retrieved from http://faculty.econ.ucdavis.edu/faculty/bonanno/GT_Book.html



Bottomley, Christopher, and Timothy Luke WIlliamson. (n.d.). Rational risk-aversion: Good things come to those who weight. doi:10.1111/phpr.13006



Briggs, Ray. (2015). Costs of abandoning the sure thing principle. Canadian Journal of Philosophy, 45(5), 827–840. doi:10.1080/00455091.2015.1122387



Buchak, Lara. (2013). Risk and rationality. Oxford University Press.



Buchak, Lara. (2017). Précis of risk and rationality. Philosophical Studies, 174(9), 2363–2368. doi:10.1007/s11098-017-0904-7



Callahan, Laura Frances. (2021). Epistemic existentialism. Episteme, 18(4), 539–554. doi:10.1017/epi.2019.25



Chandler, Jake. (2017). Descriptive Decision Theory. In Edward N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2017). https://plato.stanford.edu/archives/win2017/entries/decision-theory-descriptive/; Metaphysics Research Lab, Stanford University.



Chang, Ruth. (2002). The possibility of parity. Ethics, 112(4), 659–688. doi:10.1086/339673



Chernoff, Herman. (1954). Rational selection of decision functions. Econometrica, 22(4), 422–443. doi:10.2307/1907435



Cho, In-Koo, and David M. Kreps. (1987). Signalling games and stable equilibria. The Quarterly Journal of Economics, 102(2), 179–221. doi:10.2307/1885060



Cohen, Shani, and Shengwu Li. (2023). Sequential cursed equilibrium. Retrieved from https://arxiv.org/abs/2212.06025



Cohen, Stewart. (2013). A defence of the (almost) equal weight view. In David Christensen & Jennifer Lackey (Eds.), The epistemology of disagreement: New essays (98–117). Oxford University Press.



Conlisk, John. (1996). Why bounded rationality? Journal of Economic Literature, 34(2), 669–700.



Das, Nilanjan. (2023). The value of biased information. British Journal for the Philosophy of Science, 74(1), 25–55. doi:10.1093/bjps/axaa003



Davey, Kevin. (2011). Idealizations and contextualism in physics. Philosophy of Science, 78(1), 16–38. doi:10.1086/658093



Dogramaci, Sinan. (2012). Reverse engineering epistemic evaluations. Philosophy and Phenomenological Research, 84(3), 513–530. doi:10.1111/j.1933-1592.2011.00566.x



Egan, Andy. (2007). Some counterexamples to causal decision theory. Philosophical Review, 116(1), 93–114. doi:10.1215/00318108-2006-023



Elga, Adam. (2000). Self-locating belief and the sleeping beauty problem. Analysis, 60(4), 143–147. doi:10.1093/analys/60.2.143



Elliott, Edward. (2019). Normative decision theory. Analysis, 79(4), 755–772. doi:10.1093/analys/anz059



Eyster, Erik, and Matthew Rabin. (2005). Cursed equilibrium. Econometrica, 73(5), 1623–1672. Retrieved from 10.1111/j.1468-0262.2005.00631.x



Fey, Mark. (2012). Symmetric games with only asymmetric equilibria. Games and Economic Behavior, 75(1), 424–427. doi:10.1016/j.geb.2011.09.008



Fong, Meng-Jhang, Po-Hsuan Lin, and Thomas R. Palfrey. (2023). Cursed sequential equilibrium. Retrieved from https://arxiv.org/abs/2301.11971



Fusco, Melissa. (n.d.). Absolution of a causal decision theorist. doi:10.1111/nous.12459



Gallow, J. Dmitri. (n.d.). The sure thing principle leads to instability. Retrieved from Philosophical Quarterly website: https://philpapers.org/archive/GALTST-2.pdf



Gallow, J. Dmitri. (2020). The causal decision theorist’s gudie to managing the news. The Journal of Philosophy, 117(3), 117–149. doi:10.5840/jphil202011739



Gibbard, Allan, and William Harper. (1978). Counterfactuals and two kinds of expected utility.



Good, I. J. (1967). On the principle of total evidence. British Journal for the Philosophy of Science, 17(4), 319–321. doi:10.1093/bjps/17.4.319



Goodsell, Zachary. (n.d.). Decision theory unbound. doi:10.1111/nous.12473



Grant, Simon, Guerdjikova Ani, and John Quiggin. (2021). Ambiguity and awareness: A coherent multiple priors model. The B.E. Journal of Theoretical Economics, 21(2), 571–612. doi:10.1515/bejte-2018-0185



Greco, Daniel, and Brian Hedden. (2016). Uniqueness and metaepistemology. The Journal of Philosophy, 113(8), 365–395. doi:10.1111/phc3.12318



Gustafsson, Johan E. (2011). A note in defence of ratificationism. Erkenntnis, 75(1), 147–150. doi:10.1007/s10670-010-9267-6



Hammond, Peter J. (1988). Consequentialist foundations for expected utility. Theory and Decision, 25(1), 25–78. doi:10.1007/BF00129168



Hare, Caspar, and Brian Hedden. (2015). Self-reinforcing and self-frustrating decisions. Noûs, 50(3), 604–628. doi:10.1111/nous.12094



Harper, William. (1986). Mixed strategies and ratifiability in causal decision theory. Erkenntnis, 24(1), 25–36. doi:10.1007/BF00183199



Harper, William. (1988). Causal decision theory and game theory: A classic argument for equilibrium solutions, a defense of weak equilibria, and a new problem for the normal form representation. In William Harper & Brian Skyrms (Eds.), Causation in decision, belief change, and statistics: Proceedings of the irvine conference on probability and causation (25–48). doi:10.1007/978-94-009-2865-7_2



Heinzelmann, Nora. (n.d.). Rationality is not coherence. doi:10.1093/pq/pqac083



Horowitz, Sophie. (2014). Immoderately rational. Philosohical Studies, 167(1), 41–56. doi:10.1007/s11098-013-0231-6



Jackson, Frank. (1998). From metaphysics to ethics: A defence of conceptual analysis. Oxford.



Jeffrey, Richard. (1983). Bayesianism with a human face. In J. Earman (ed.) (Ed.), Testing scientific theories. University of Minnesota Press.



Joyce, James M. (2012). Regret and instability in causal decision theory. Synthese, 187(1), 123–145. doi:10.1007/s11229-011-0022-6



Keynes, John Maynard. (1921). Treatise on probability. Macmillan.



Keynes, John Maynard. (1923). A tract on monetary reform. Macmillan.



Knight, Frank. (1921). Risk, uncertainty and profit. University of Chicago Press.



Kopec, Matthew, and Michael G. Titelbaum. (2016). The uniqueness thesis. Philosophy Compass, 11(4), 189–200. doi:10.1111/phc3.12318



Lee, Wooram. (n.d.). What is structural rationality? doi:10.1093/pq/pqad072



Levinstein, Benjamin Anders, and Nate Soares. (2020). Cheating death in damascus. Journal of Philosophy, 117(5), 237–266. doi:10.5840/jphil2020117516



Lewis, David. (n.d.). Letter to jonathan gorman, 19 april 1989. In Philosophical letters of david K. lewis (472–3).



Lewis, David. (1969). Convention: A philosophical study. Harvard University Press.



Lewis, David. (1979). Prisoners’ dilemma is a Newcomb problem. Philosophy and Public Affairs, 8(3), 235–240.



Lewis, David. (1981). Why ain’cha rich? Noûs, 15(3), 377–380. doi:10.2307/2215439



Lewis, David. (2020). Letter to D. H. Mellor, 14 october 1981. In Philosophical letters of david K. lewis (432–434).



Lipsey, R. G., and Kelvin Lancaster. (1956). The general theory of second best. Review of Economic Studies, 24(1), 11–32. doi:10.2307/2296233



Lota, Kenji, and Ulf Hlobil. (2023). Resolutions against uniqueness. Erkenntnis, 88(3), 1013–1033. doi:10.1007/s10670-021-00391-z



McClennen, Edward. (1990). Rationality and dynamic choice. Cambridge University Press.



Meacham, Christopher. (2019). Deference and uniqueness. Philosohical Studies, 176(3), 709–732. doi:10.1007/s11098-018-1036-4



Mills, Charles W. (2005). "Ideal theory" as ideology. Hypatia, 20(3), 165–184. doi:10.1111/j.1527-2001.2005.tb00493.x



Morgenstern, Oscar. (1935). Vollkommene voraussicht und wirtschaftliches gleichgewicht. Zeitschr. F. Nationalökonomie, 6(3), 337–357. doi:10.1007/BF01311642



Moulin, H. (1985). Choice functions over a finite set: A summary. Social Choice and Welfare, 2(2), 147–160. doi:10.1007/BF00437315



Myerson, R. B. (1978). Refinements of the nash equilibrium concept. International Journal of Game Theory, 7(2), 73–80. doi:10.1007/BF01753236



Nash, John. (1951). Non-cooperative games. Annals of Mathematics, 54(2), 286–295. doi:10.2307/1969529



Nozick, Robert. (n.d.). Newcomb’s problem and two principles of choice. In Essays in honor of carl G. Hempel: A tribute on the occasion of his sixty-fifth birthday. Hempel: A tribute on the occasion of his sixty-fifth birthday (114–146).



O’Connor, Cailin. (2019). The origins of unfairness: Social categories and cultural evolution. Oxford University Press.



Palmira, Michele. (2023). Permissivism and the truth connection. Erkenntnis, 88(2), 641–6556. doi:10.1007/s10670-020-00373-7



Pearce, David G. (1984). Rationalizable strategic behavior and the problem of perfection. Econometrica, 52(4), 1029–1050. doi:10.2307/1911197



Peirce, C. S. (1967). Note on the theory of the economy of research. Operations Research, 15(4), 643–648.



Podgorski, Aberlard. (2022). Tournament decision theory. Noûs, 56(1), 176–203. doi:10.1111/nous.12353



Quiggin, John. (1982). A theory of anticipated utility. Journal of Economic Behavior & Organization, 3(4), 323–343. doi:10.1016/0167-2681(82)90008-7



Ramsey, Frank. (1990). General propositions and causality. In D. H. Mellor (Ed.), Philosophical papers (145–163). Cambridge University Press.



Richter, Reed. (1984). Rationality revisited. Australasian Journal of Philosophy, 62(4), 393–404. doi:10.1080/00048408412341601



Risse, Mathias. (2000). What is rational about nash equilibria? Synthese, 124(3), 361–384. doi:10.1023/a:1005259701040



Robinson, Julia. (1949). On the hamiltonian game (a traveling salesman problem). Santa Monica, CA: The RAND Corporation.



Ross, Ryan. (2021). Alleged counterexamples to uniqueness. Logos and Episteme, 12(2), 203–13. doi:10.5840/logos-episteme202112214



Samuelson, Paul A. (1938). A note on the pure theory of consumer’s behaviour. Econometrica, 5(17), 61–71. doi:10.2307/2548836



Schrijver, Alexander. (2005). On the history of combinatorial optimization (till 1960). Handbooks in Operations Research and Management Science, 12, 1–68. doi:10.1016/S0927-0507(05)12001-5



Schultheis, Ginger. (2018). Living on the edge: Against epistemic permissivism. Mind, 127(507), 863–879. doi:10.1093/mind/fzw065



Selten, R. (1975). Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4(1), 25–55. doi:10.1007/BF01766400



Sen, Amartya. (1971). Choice functions and revealed preference. Review of Economic Studies, 38(3), 307–317. doi:10.2307/2296384



Sen, Amartya. (2006). What do we want from a theory of justice? Journal of Philosophy, 103(5), 215–238. doi:10.5840/jphil2006103517



Shafer, Glenn. (1976). A mathematical theory of evidence. Princeton University Press.



Skyrms, Brian. (1984). Pragmatics and empiricism. Yale University Press.



Skyrms, Brian. (2004). The stag hunt and the evolution of social structure. Cambridge University Press.



Smullyan, Raymond. (1978). What is the name of this book? The riddle of dracula and other logical puzzles. Prentice-Hall.



Spencer, Jack. (2021). Rational monism and rational pluralism. Philosophical Studies, 178, 1769–1800. doi:10.1007/s11098-020-01509-9



Spencer, Jack. (2023). Can it be irrational to knowingly choose the best? Australasian Journal of Philosophy, 101(1), 128–139. doi:10.1080/00048402.2021.1958880



Spencer, Jack, and Ian Wells. (2019). Why take both boxes? Philosophy and Phenomenological Research, 99(1), 27–48. doi:10.1111/phpr.12466



Stalnaker, Robert. (1998). Belief revision in games: Forward and backward induction. Mathematical Social Sciences, 36(1), 31–56. doi:10.1016/S0165-4896(98)00007-9



Stalnaker, Robert. (1999). Extensive and strategic forms: Games and models for games. Research in Economics, 53(3), 293–319. doi:10.1006/reec.1999.0200



Stalnaker, Robert. (2008). Our knowledge of the internal world. Oxford University Press.



Strevens, Michael. (2008). Depth: An account of scientific explanations. Harvard University Press.



Sutton, John. (2000). Marshall’s tendencies: What can economists know? MIT Press.



Thoma, Johanna. (2019). Risk aversion and the long run. Ethics, 129(2), 230–253. doi:10.1086/699256



Valentini, Laura. (2012). Ideal vs. Non-ideal theory: A conceptual map. Philosophy Compass, 7(9), 654–664. doi:10.1111/phco.2012.7.issue-9



Weatherson, Brian. (2019). Normative externalism. Oxford University Press.



Wedgwood, Ralph. (2013). Gandalf’s solution to the newcomb problem. Synthese, 190(14), 2643–2675. doi:10.1007/s11229-011-9900-1



Weirich, Paul. (1985). Decision instability. Australasian Journal of Philosophy, 63(4), 465–472. doi:10.1080/00048408512342061



Wells, Ian. (2019). Equal opportunity and newcomb’s problem. Mind, 128(510), 429–457. doi:10.1093/mind/fzx018



Wible, James R. (1994). Charles sanders peirce’s economy of research. Journal of Economic Methodology, 1(1), 135–160. doi:10.1080/13501789400000009



Wilson, Robert B. (1967). Competitive bidding with asymmetric information. Management Science, 13(11), 816–820. doi:10.1287/mnsc.13.11.816



Worsnip, Alex. (2021). Fitting things together: Coherence and the demands of structural rationality. Oxford University Press.



Wright, Crispin. (2021). The riddle of vagueness: Selected essays 1975-2020. Oxford University Press.



Xefteris, Dimitrios. (2015). Symmetric zero-sum games with only asymmetric equilibria. Games and Economic Behavior, 89(1), 122–125. doi:10.1016/j.geb.2014.12.001



Ye, Ru. (2023). Permissivism, the value of rationality, and a convergence-theoretic epistemology. Philosophy and Phenomenological Research, 106(1), 157–175. doi:10.1111/phpr.12845











Appendix A — Games as Decisions

Much of what happens in this book comes from seeing demonic decision problems as games and, conversely, seeing games as potential demonic decision problems. So I want to spend a little time setting out how the translation between the two works. This is intended largely for people who want to use the existing resources in game theory, which are voluminous, as a source for decision theoretic ideas.

Say that a demonic decision problem is a problem where the states are sensitive to the predictions of some kind of demon. So Newcomb’s Problem is the classic demonic decision problem, but it’s hardly the only one. Indeed, almost every decision problem in this book is demonic. Transforming a demonic decision problem into a game is easy. As I noted, you just replace the states generated by Demon’s choices with moves for Demon, and give them payout 1 if they predict correctly, and 0 otherwise.

You might worry that this only gives you cases where Demon is approximately perfect, but we also want cases where the demon is, say, 80% accurate. But that’s easy to do as well. In fact there are two ways to do it.

The first is what I’ll call the Selten strategy, because it gives the demon a ‘trembling hand’ in the sense of Selten (1975). Instead of letting Demon choose a state in the original problem, let Demon choose one of n buttons, where n is the number of choices the (human) chooser has. Each button is connected to a probabilistic device that generates one of the original states. If you want Demon to be 80% accurate when option oi is chosen, say the button bi associated with option oi outputs state si with probability 0.8, and each of the other states with probability 0.2n−1\frac{0.2}{n - 1}. And still say that Demon gets payout 1 for any i if the chooser selects oi and the button generates state si, and 0 otherwise.

The second is what I’ll call the Smullyan strategy, because it involves a Knights and Knaves puzzle of the kind that play a role in several of Smullyan’s books, especially his (1978). Here the randomisation takes place before Demon’s choice. Demon is assigned a type Knight or Knave. Demon is told of the assignment, but Chooser is not. If Demon is assigned type Knight, the payouts stay the same as in the game where Demon is arbitrarily accurate. If Demon is assigned type Knave, the payouts are reversed, and Demon gets payout 1 for an incorrect prediction.

There are benefits to each approach, and there are slightly different edge cases that are handled better by one or other version. I find the Selten strategy a little easier to use, especially if Demon’s expected accuracy is different with different choices by Chooser. But in general either will work for turning a demonic decision problem into a game.

Turning one-shot games into demonic decision problems is a bit more interesting.1 Start with a completely generic two-player, two-option, simultaneous move, symmetric game, as shown in table Table A.1. We won’t only look at symmetric games, but it’s a nice way to start.




Table A.1: A generic symmetric game.





	
	A
	B





	A
	x, x
	y, z



	B
	z, y
	w, w










In words, what this says is that each player chooses either A or B. If they both choose A, they both get xx. If they both choose B, they both get w. And if one chooses A and the other chooses B, the one who chooses A gets y and the one who chooses B gets z. (Note that the payouts list row’s payment first, if you’re struggling to translate between the table and the text.) A lot of famous games can be defined in terms of restrictions on the four payout values. For example, a game like this is a Prisoners’ Dilemma if the following constraints are met.


	x > z

	y > w

	w > x



Some books will also add 2x > y + z as a further constraint, but I’ll stick with these three.

Now to turn a game into a demonic decision problem, first replace column’s payouts with 1s and 0s, with 1s along the main diagonal, and 0s everywhere else. Table Table A.2 shows what a generic symmetric game looks like after this transformation.




Table A.2: The demonic version of a generic symmetric game.





	
	A
	B





	A
	x, 1
	y, 0



	B
	z, 0
	w, 1










The next step is to replace Demon’s moves with states that are generated by Demon’s predictions. As before, I’ll put ‘P’ in front of a choice name to indicate the state of that choice being predicted. The result is table Table A.3, which we already saw back in the introduction.




Table A.3: The demonic decision problem generated by a generic symmetric game.





	
	PA
	PB





	A
	x
	y



	B
	z
	w










If we add the constraints x > z, y > w, w > x, this is a Newcomb Problem. I’m a long way from the first to point out the connections between Prisoners’ Dilemma and Newcomb’s Problem; it’s literally in the title of a David Lewis paper (Lewis, 1979). But what I want to stress here is the recipe for turning a familiar game into a demonic problem.

We can do the same thing with Chicken. The toy story behind Chicken is that two cars are facing off at the end of a road. They will drive straight at each other, and at the last second, each driver will choose to swerve off the road, which we’ll call option A, or stay on the road, which we’ll call option B. If one swerves and the other stays, the one who stays is the winner. If they both swerve they both lose and it’s boring, and if they both stay it’s a fiery crash. So in terms of the payouts in the general symmetric game, the constraints are:


	x < z

	y >> w

	x >> w



Just what it means for one value to be much more than another, which is what I mean by ‘>>’, is obviously vague. Table A.4 gives an example with some numbers that should satisfy it.




Table A.4: A version of Chicken.





	
	A
	B





	A
	0, 0
	0, 1



	B
	1, 0
	-100,-100










Replace the other driver, the one who plays column in this version, with a Demon, who only wants to predict row’s move. The result is Table A.5.




Table A.5: A demonic version of Chicken.





	
	A
	B





	A
	0, 1
	0, 0



	B
	1, 0
	-100,1










All I’ve done to generate table Table A.5 is replace column’s payouts with 1s on the main diagonal, and 0s elsewhere. The next step is to replace the demonic player with states generated by Demon’s choices. The result is table Table A.6.




Table A.6: A demonic decision problem based on Chicken.





	
	PA
	PB





	A
	0
	0



	B
	1
	-100










And Table A.6 is just the Psychopath Button example that Andy Egan (2007) raises as a problem for Causal Decision Theory.

Another familiar game from introductory game theory textbooks is matching pennies. This is a somewhat simplified version of rock-paper-scissors. Each player has a penny, and they reveal their penny simultaneously. They can either show it with the heads side up (option A), or the tails side up (option B). We specify in advance who wins if they show the same way, and who wins if they show opposite ways. So let’s say column will win if both coins are heads or both are tails, and row will win if they are different. The payouts are shown in Table A.7.




Table A.7: The game matching pennies.





	
	A
	B





	A
	0, 1
	1, 0



	B
	1, 0
	0, 1










This isn’t a symmetric game, but it is already demonic. Column’s payouts are 1 in the main diagonal and 0 elsewhere. So we can convert it to a demonic decision problem fairly easily, as in Table A.8.




Table A.8: Matching Pennies as a decision problem.





	
	PA
	PB





	A
	0
	1



	B
	1
	0










And Table A.8 is the familiar problem Death in Damascus from Gibbard & Harper (1978).

Let’s do one last one, starting with the familiar game Battle of the Sexes.2 Row and Column each have to choose whether to do R or C. They both prefer doing the same thing to doing different things. But Row would prefer they both do R, and Column would prefer they both do C. The original name comes from a version of the story where Row and Column are a heterosexual married couple, and Row wants to do some stereotypically male thing, while Column wants to do some stereotypically female thing. That framing is tiresome at best, but the category of asymmetric coordination games is not, hence my more abstract presentation. So Table A.9 is one way we might think of the payouts.




Table A.9: A version of Battle of the Sexes.





	
	R
	C





	R
	4, 1
	0, 0



	C
	0, 0
	1, 4










As it stands, that’s not a symmetric game. But we can make it a symmetric game by relabelling the choices. Let option A for each player be doing their favoured choice, and option B be doing their less favoured choice. That turns Table A.9 into Table A.10.




Table A.10: Battle of the Sexes, relabelled.





	
	A
	B





	A
	0, 0
	4, 1



	B
	1, 4
	0, 0










After making that change, change column’s payouts so that it is a demonic game. The result is Table A.11.




Table A.11: A demonic version of battle of the sexes.





	
	A
	B





	A
	0, 1
	4, 0



	B
	1, 0
	0, 1










Finally, replace Demon’s choices with states generated by (probably accurate) predictions, to get the decision problem in Table A.12.




Table A.12: A demonic decision problem based on Battle of the Sexes.





	
	PA
	PB





	A
	0
	4



	B
	1
	0










That decision problem is the asymmetric version of Death in Damascus from Richter (1984).

The point of this section has not just been to show that we can turn games into decision problems by treating one of the players as a predictor. That’s true, but not in itself that interesting. Instead I want to make two further points.

One is that most of the problems that have been the focus of attention in the decision theory literature in the past couple of generations can be generated from very familiar games, the kinds of games you find in the first one or two chapters of a game theory textbook. And the generation method is fairly similar in each respect.

The second point is that most of the simple games you find in those introductory chapters turn out to result, once you transform them this way, in demonic decision problems that have been widely discussed. But there is just one exception here. There hasn’t been a huge amount of discussion of the demonic decision problem you get when you start with the game known as Stag Hunt. One of the aims of this book has to been to remedy that. Particularly in Chapter 8 I’ve relied on demonic decision problems that you get by starting with Stag Hunt and applying the transformations discussed in this appendix.

But there are so many more interesting examples from game theory that could be used to generate interesting decision problems. I’ve made heavy use in this book of demonic decision problems that are generated by thinking of the beer-quiche game from Cho & Kreps (1987) as a demonic decision problem. I’m sure that there are more interesting arguments that can be generated by transforming other games into demonic decision problems.






1. This approach doesn’t always generalise to dynamic games, as became relevant to the discussion of Figure 7.2. But it does work sometimes, and applying the approach to the beer-quiche game has been a major part of the story.



2. O’Connor (2019) calls this the Bach-Stravinsky game, which is a better name.





Appendix B — Non-Ideal Decision Theory




Appendix C — Rock-Paper-Scissors

This appendix shows how to find the equilibrium of Table 2.2 (b), the version of Rock-Paper-Scissors where it is common knowledge that the players will get a bonus of c > 0 if they will while playing rock. The game is symmetric, so we’ll just work out Column’s strategy, and the same will go for Row.

There is no pure strategy equilibrium of the game, so we have to find a mixed strategy for each player. And a mixed strategy equilibrium requires that every option that has positive probability has equal expected returns. (If that didn’t happen, it wouldn’t make sense to mix between them.) Let x be the probability (in equilibrium) that Column plays Rock, y that they play Paper, and z that they play Scissors. Given that, the expected return of the three options for Row are:

V(Rock)=z(1+c)−yV(Paper)=x−zV(Scissors)=y−x\begin{align*}
V(Rock) &= z(1+c) - y \\
V(Paper) &= x - z \\
V(Scissors) &= y - x
\end{align*}
We know that these three values are equal, and that x + y + z = 1. Since x ‑ z = y ‑ x, it follows that x = y+z2\frac{y+z}{2}. And that plus the fact that x + y + z = 1 implies that x =  13\frac{1}{3}. So we’ve already shown one of the surprising results; adding in the bonus c will not change the probability with which Rock is played. Substituting this value for x into the fact that Rock and Paper have the same payout, we get the following.

13−z=z(1+c)−y⇒13+y=z(2+c)⇒z=y+132+c\begin{align*}
&& \frac{1}{3} - z &= z(1+c) - y \\
\Rightarrow && \frac{1}{3} + y &= z(2+c) \\
\Rightarrow && z &= \frac{y + \frac{1}{3}}{2 + c}
\end{align*}
Now we can substitute the values for x and z into the fact that x + y + z = 1.

x+y+z=1⇒13+y+y+132+c=1⇒(2+c)+3y(2+c)+(3y+1)=3(2+c)Multiply both sides by 3(2+c)⇒3cy+9y+c+3=3c+6⇒3cy+9y=2c+3⇒y=2c+33c+9⇒z=33c+9From previous derivation for z\begin{align*}
&& x + y + z &= 1  && \\
\Rightarrow && \frac{1}{3} + y + \frac{y + \frac{1}{3}}{2 + c} &= 1 && \\
\Rightarrow && (2+c) + 3y(2+c) + (3y+1) &= 3(2+c) && \text{Multiply both sides by } 3(2+c) \\
\Rightarrow && 3cy + 9y + c + 3 &= 3c + 6 \\
\Rightarrow && 3cy + 9y &= 2c + 3 \\
\Rightarrow && y &= \frac{2c + 3}{3c + 9} \\
\Rightarrow && z &= \frac{3}{3c + 9} && \text{From previous derivation for }z
\end{align*}
So each option has expected payout c3c+9\frac{c}{3c+9}. And there is one unsurprising result, namely that the expected return to the players increases as c increases. But note that x, the probability that a player plays Rock, is invariant as c changes. And z, the probability that a player plays Scissors, goes down as c goes up.

It is intuitive that announcing the reward makes each player less likely to play Scissors. And that in turn puts down downward pressure on playing Rock. What you need some theory (and algebra) to show is that this downward pressure is exactly as strong as the upward pressure that comes from the incentive for playing Rock supplied by the bystander. Intuition alone can tell you what the various forces are that are acting on a chooser; the role of theory is to say something more precise about the strength of these forces.




Appendix D — Signals and Outcomes

In Section 4.3, I said there was another case where EDT left one with less money, and where this didn’t rely on having different evidence in the high return case to the low return case. This appendix describes such a case. It is a version of a signalling game of the kind introduced by Lewis (1969). And in particular it’s a version of the broadly adversarial kinds of signalling games that are central to the plot of Cho & Kreps (1987). It will involve a human Chooser, and a Demon who is excellent at predictions, and the game will have three stages.

At the first stage a fair coin is flipped, and the result shown to Chooser, but not to Demon. At the second stage, Chooser will choose Up or Down, and the choice will be publicly announced. At the third stage, Demon will try to guess what the coin showed. Demon knows the payoff table I’m about to show you, and is arbitrarily good at predicting Chooser’s strategy for what to do given how the coin appears. This prediction is causally independent of Chooser’s choice, but Demon’s guess is not independent; it could be affected by the choice. The payoffs to each player are a function of what happens at each of the three steps, and are given by table Table D.1. (The payoffs here are all in utils.)




Table D.1: Payouts for the coins and signals game





	Coin
	Chooser
	Demon
	Chooser Payoff
	Demon Payoff





	H
	U
	H
	40
	1



	H
	U
	T
	400
	0



	H
	D
	H
	0
	1



	H
	D
	T
	0
	0



	T
	U
	H
	40
	0



	T
	U
	T
	28
	1



	T
	D
	H
	0
	0



	T
	D
	T
	44
	1










Figure D.1 shows the game they are playing in tree form. We start at the middle, then move left or right depending on the coin flip, up or down depending on Chooser’s choice, and at one or other angle depending on Demon’s choice. Demons’s payoffs are just as you’d expect - they get rewarded iff they figure out how the coin landed. Chooser’s payoffs are more complicated, but the big things to note are the huge payout if they get to the top-left and Demon does not make a correct prediction, and the generally poor payouts for choosing Down.










Figure D.1: Tree Diagram of the Coins and Signals Game








Demon predicts Chooser’s strategy. That is, Demon predicts Chooser’s plan about what to do if the coin lands Heads and what to do if the coin lands Tails, before the game starts. They make their guess about how the coin landed after seeing Chooser’s actual choice, and updating their prior beliefs (about both the coin and Chooser) with this information. If they predict that Chooser will do the same thing however the coin lands, they will have no useful information about the coin, so they will flip their own coin to make a guess. In that case it will be 50/50 whether Demon says Heads or Tails. Also, if Demon is surprised by what Chooser does, i.e., if they had predicted Chooser would do one thing however the coin lands but Chooser does the other thing, Demon will also flip their own coin to make a guess.1 Finally, Demon’s predictions are arbitrarily accurate. For simplicity, I’ll assume Demon is correct with probability 1, though it doesn’t matter if you allow for probability ε\varepsilon that Demon gets it wrong.

Now I want to analyse what Chooser will do if they follow EDT. It should be fairly clear that if the coin lands Heads, Chooser should say Up. The worst possible return from Up is 40, the best possible return from Down is 0. So that’s what any theory would recommend, and Chooser will do that whether or not they follow EDT. Indeed, this is so clear that we should assume Demon will predict that Chooser will play Up if the coin lands Heads. So what happens if the coin lands Tails? There are four possibilities here: the two things Chooser might do crossed with the two predictions Demon might make. The expected return to Chooser in these four possibilities is given in Table D.2.




Table D.2: The expected payout to Chooser in four cases if the coin lands Tails





	
	PUp
	PDown





	Up
	34
	40



	Down
	18
	44










The numbers in Table D.2 aren’t entirely obvious; I’ll spell out how I got them.


	If Demon predicts Up (i.e., Demon predicts that Chooser will adopt a strategy that involves playing Up if the coin lands Heads) Demon will flip a coin. And they’ll do that whatever Chooser does. That’s because they’ll either get no information (if Chooser plays Up), or will be surprised (if Chooser plays Down). So Chooser will get the average of lines 5 and 6 in Table D.1 if they play Up, and the average of lines 7 and 8 if they play Down.

	If Demon predicts Down, and Chooser plays Up, Demon will think (falsely) that the coin must have landed Heads, since Demon will have predicted that Chooser will only say Up if Heads. So Demon will say Heads. So we’ll definitely be at line 5 of Table D.1, where Chooser gets 40.

	If Demon predicts Down, and Chooser plays Down, Demon will think (correctly) that the coin must have landed Tails. So Demon will say that, and we’ll be at line 8 of Table D.1.



In a decision problem like Table D.2, EDT says that all that matters is which of the top-left and bottom-right cells is largest. In this case, it’s the bottom-right, so EDT says to play Down. That isn’t absurd in this case; it gets the best possible payout of 44. So that’s our analysis of the game for EDT: Chooser plays Up if Heads, Down if Tails, gets 40 if Heads and 44 if Tails (plus/minus a small amount in expectation if Demon has ε\varepsilon chance of being wrong), and on average gets 42.

GDT does not give any clear verdict about what to do in Table D.2; it says either Up or Down is permissible. So following GDT doesn’t mean you’ll do better than EDT in this game; you might do exactly as well as EDT. But all it takes to get a “Why Ain’cha Rich?” argument going is to show that one theory does better than EDT. And the version of CDT that Dmitri Gallow (2020) endorses implies that one should play Up in Table D.2. So someone following his theory will play Up however the coin lands. So Demon will always flip a coin to decide what to do. So all of the top four outcomes in Figure D.1 are equally likely, and Chooser will on average get a return of 127. Since 127 > 42, that means that on average if Chooser follows Gallow’s theory, they will on average be much richer than if they follow EDT. So if “Why Ain’Cha Rich?”, they show that EDT should be rejected in favour of Gallow’s theory.

Ian Wells (2019) has earlier offered an example where EDT predictably does worse than (all versions of) CDT. His case involves a two-step game, where the EDTer will, at step 2, make a decision that everyone, whether they believe in CDT or EDT or any other plausible theory, think is bad from the perspective of the player at step 1. At round 1 the players can pay to tie their hands at round 2, and the EDTer will make this payment. (As would the CDTer who thinks they will become an EDTer before round 2 starts.) Arif Ahmed (2020) responds that this is an unfair criticism. In Wells’s cases, he says, the EDT and CDT deciders are not in equivalent situations in round one. The EDTer knows that they will use EDT in later rounds, and the CDTer knows that they will use CDT in later rounds. So they have different evidence about what will happen at some later time in a way that’s relevant to their current decision, so it’s not a like-for-like comparison between CDT and EDT at the first stage.

I don’t think this is a fair criticism of Wells, or a successful defence of EDT. But even if you think Ahmed has shown how EDT survives Wells’s criticisms, his response doesn’t work here. Chooser will definitely choose Up if the coin lands Heads, whether they follow EDT, Gallow’s theory, or any remotely plausible theory. And this is common knowledge. Demon knows this, and Chooser knows that Demon knows it, and so on. The only difference is that if Chooser follows EDT, they will play Down if Tails. And that’s good as far as it goes; they’ll probably get the highest possible payoff they can get at that point. More importantly for this debate, they will have the same subjective states if Tails is true whether they follow EDT, Gallow’s theory, or anything else. They will believe that they would have played Up if Heads, and that the Demon would have predicted that. So the different choices they make if the coin lands Tails can’t be traced back to differences in their subjective states. So the complaint that Ahmed makes about Wells’s examples can’t be made here (even setting aside the question of whether it is a fair complaint). Nonetheless, the EDTer ends up with less money in the long run than the follower of Gallow’s theory when playing this game.






1. A key part of the discussion in Cho & Kreps (1987) is that in some cases we can say substantive things about what a player will do if they are surprised in this sense. But Figure D.1 is not such a case.





Appendix E — Risk-Weighted Utility

This appendix goes over a problem for Lara Buchak’s risk-weighted utility theory, based around the Single Choice Principle from Chapter 8. Buchak’s theory concerns normal decision problems, where there are no demons lying around, so we have to modify Single Choice Principle a little to make it apply. The modifications still leave it recognisably the same principle though. And the main point of this appendix is to show that it is possible to theorise about normal and abnormal decision problems using the same tools.

The core of Buchak’s theory is a non-standard way of valuing a gamble. For simplicity, we’ll focus on gambles with finitely many outcomes. Associate a gamble with a random variable O, which takes values o1, …\dots, on, where oj > oi iff j > i. Buchak says that the risk-weighted expected utility of O is given by this formula, where r is the agent’s risk-weighting function.

REU(O)=o1+∑i=2nr(Pr(O≥oi))(oi−oi−1)
REU(O) = o_1 + \sum_{i = 2}^n r(\Pr(O \geq o_i))(o_i - o_{i-1})


The decision rule then is simple: choose the gamble with the highest REU.

The key notion here is the function r, which measures Chooser’s attitudes to risk. If r is the identity function, then this definition becomes a slightly non-standard way of defining expected utility. Buchak allows it to be much more general. The key constraints are that r is monotonically increasing, that r(0) = 0 and r(1) = 1. In general, if r(x) < x, Chooser is some intuitive sense more risk-averse than an expected utility maximiser, while if r(x) > x, Chooser is more risk-seeking. The former case is more relevant to everyday intuitions.

There are a number of good reasons to like Buchak’s theory. Standard expected utility theory explains risk-aversion in a surprisingly roundabout way. Risk-aversion simply falls out as a consequence of the fact that at almost all points, almost all goods have a declining marginal utility. This is theoretically elegant - risk-aversion and relative satiation are explained in a single framework - but has a number of downsides. For one thing, it doesn’t allow rational agents to have certain kinds of risk-aversion, such as the kind described by Allais (1953). For another, it doesn’t seem like risk-aversion just is the same thing as the declining marginal utility of goods. Buchak’s theory, by putting attitudes to risk into r, avoids both these problems.

Unfortunately, Buchak’s theory runs into problems. Our focus will be on two-stage problems where Chooser’s choice only makes a difference if the game gets to stage 2. The general structure will be this.


	A coin with probability y of landing Heads will be flipped. If it lands Tails, Chooser gets the Exit Payout, and the game ends.

	If the game is still going, a second coin, with probability x of landing Heads, will be flipped.

	Chooser’s payout will be a function of whether they chose Up or Down, and the result of this second coin.



I’ll write H1 and T1 for the propositions that the first coin lands Heads and Tails respectively, and H2 and T2 for the propositions that the second coin lands Heads and Tails respectively. I’ll mostly be interested in the case where Up is a bet on H2, and Down is declining that bet, but the general case is important to have on the table. The general structure of these problems is given by Table E.1.




Table E.1: The abstract form of an exit problem with coins.







(a) Exit Parameters





	Exit Payout
	e



	Pr(H1)
	y



	Pr(H2)
	x
















(b) Round 2 game





	
	H2
	T2





	Up
	a
	b



	Down
	c
	d



















Then we get a version of Single Choice Principle that applies to games like this.


	Single Choice Principle: Whether a choice is rational for Chooser is independent of whether Chooser chooses before or after they are told the result of the first coin flip.



Again, the argument for this turns on reflections about conditional questions. If Chooser is asked before the first coin flip, they are being asked what they want to do if the first coin lands Heads; if they are asked after that flip, they are being asked what they want to do now that the first coin landed Heads. These questions should get the same answer. I’ll show that REU-maximisation only gets that result if r is the identity function, i.e., if REU-maximisation just is expected utility maximisation.

As before, I’ll refer to Chooser’s Early and Late choices, meaning their choices before and after being told the result of the first coin. I’ll write REUE(X) to be the risk-weighted expected utility of X before finding out the result of the first coin toss, and REUL(X) to be the risk-weighted expected utility of X after finding out the result of the first coin toss. So Single Choice Principle essentially becomes this biconditional, for any gambles X and Y.

REUE(X)≥REUE(Y)↔REUL(X)≥REUL(Y)
REU_E(X) \geq REU_E(Y) \leftrightarrow REU_L(X) \geq REU_L(Y)


I’ll first prove that this implies that r must be multiplicative, i.e., that r(xy) = r(x)r(y) for all x, y. This isn’t a particularly problematic result; the most intuitive values for r, like r(x) = x2, are multiplicative. Consider the Exit Problem shown in Table E.2, where x and y are arbitrary.




Table E.2: An exit game with exit payout 0.







(a) Exit Parameters





	Exit Payout
	0



	Pr(H1)
	y



	Pr(H2)
	x
















(b) Round 2 game





	
	H2
	T2





	Up
	1r(x)\frac{1}{r(x)}
	0



	Down
	1
	1



















It’s easy to check that REUL(U) = REUL(D) = 1. So by Single Choice Principle, REUE(U) = REUE(D). Since REUE(U) = r(xy)r(x)\frac{r(xy)}{r(x)}, and REUL(D) = r(y), it follows that r(xy) = r(x)r(y), as required.

Define m, for midpoint, as r-1(0.5). Intuitively, m is the probability where the risk-weighting agent is indifferent between taking and declining a bet that stands to win and lose the same amount. Since r is monotonically increasing, and goes from 0 to 1, m must exist. Consider now Table E.3, where y is arbitrary.




Table E.3: An exit game with exit payout 1.







(a) Exit Parameters





	Exit Payout
	1



	Pr(H1)
	y



	Pr(H2)
	m
















(b) Round 2 game





	
	H2
	T2





	Up
	2
	0



	Down
	1
	1



















In Table E.3, it’s also easy to see that REUL(U) = REUL(D) = 1. So by Single Choice Principle, REUE(U) = REUE(D). And it’s also clear that REUE(D) = 1, since that’s the only possible payout for Down. So REUE(U) = 1. So we get the following result.

REUE(U)=r(1−y(1−m))+r(ym)=1∴r(1−y(1−m))=r(ym)\begin{align*}
REU_E(U) &= r(1-y(1-m)) + r(ym) \\
 &= 1    \\
\therefore  r(1-y(1-m)) &= r(ym)
\end{align*}
That doesn’t look like a particularly notable result, but it will become useful when we discuss our last case, Table E.4, which is just the same as Table E.3, except the exit payout is now 2.




Table E.4: An exit game with exit payout 2.







(a) Exit Parameters





	Exit Payout
	2



	Pr(H1)
	y



	Pr(H2)
	m
















(b) Round 2 game





	
	H2
	T2



	Up
	2
	0



	Down
	1
	1



















In Table E.4, it’s again easy to see that REUL(U) = REUL(D) = 1. So by Single Choice Principle, REUE(U) = REUE(D). But the early values are more complicated: REUE(D) = 1 + r(1-y), and REUE(U) = 2r(1-y(1-m)). Using what we’ve discovered so far, we can do something with that last value.

REUE(U)=2r(1−y(1−m))=2(1−r(ym))from previous calculations=2−2r(ym)=2−2r(y)r(m)since r is multiplicative=2−r(y)since r(m)=0.5\begin{align*}
REU_E(U) &= 2r(1-y(1-m)) \\
  &= 2(1-r(ym))  && \text{from previous calculations} \\
  &= 2 - 2r(ym) \\
  &= 2 - 2r(y)r(m) && \text{since $r$ is multiplicative} \\
  &= 2 - r(y)  && \text{since $r(m) = 0.5$}
\end{align*}
Putting all this together, we get

REUE(D)=REUE(U)⇒1+r(1−y)=2−r(y)⇒r(y)+r(1−y)=1\begin{align*}
REU_E(D) &= REU_E(U)  && \Rightarrow \\
1 + r(1-y) &= 2 - r(y) && \Rightarrow \\
r(y) + r(1-y) &= 1
\end{align*}
So r is a monotonic increasing function satisfying r(0) = 0, r(1) = 1, r(xy) = r(x)r(y), and r(y) + r(1-y) = 1. The only such function is r(x) = x. So the only version of risk-weighted expected utility theory that satisfies Single Choice Principle is where r(x) = x, i.e., where risk-weighted expected utility just is old-fashioned expected utility.

This doesn’t yet prove expectationism. I haven’t shown that there is no other alternative to expected utility theory that satisfies Single Choice Principle. There are such other theories out there, such as the Weighted-linear utility theory described by Bottomley & WIlliamson (n.d.). But it’s a guide to how we could start defending expectationism in a way consistent with how we handle decision problems involving demons.




Appendix F — Against Uniqueness

In setting out GDT, I said that what mattered was that Chooser maximised expected utility given some credal function that was rational having made their choice. Some philosophers argue that the quantifier in the previous sentence is redundant; there is only one rational credence function one could have given some evidence. This view is known as Uniqueness, and its negation is known as Permissivism. The way I’ve stated GDT presupposes that Permissivism is correct, and I should defend that presupposition.

This appendix argues that thinking about symmetric games gives us new reason to believe in Permissivism. In keeping with the spirit of the book, the arguments will be game-theoretic. I’m going to offer two arguments, one involving finite games, and the other involving infinite games. In finite games, the theorist who denies Permissivism says that the players have to think that the other player is more likely to take one action rather than another, although they know the actions have equal expected utility. In infinite games, the theorist who denies Permissivism has to say that it is impossible for certain games to be played with common knowledge of rationality and shared evidence, although there does not seem to be anything paradoxical about the games. The latter set of arguments rely on the recent discovery that there are symmetric games with only asymmetric equilibria. It was long known that there are symmetric games with no pure strategy symmetric equilibria; the surprising new discovery is that there are symmetric games with asymmetric equilibria, but no symmetric equilibria involving either mixed or pure strategies. In both cases, thinking about players in symmetric games pushes us towards accepting Permissivism.

The Permissivist theses that have been the focus on recent philosophical attention vary along two dimensions.1

The first dimension concerns what we hold fixed when we say that multiple attitudes are rationally permissible. It’s basically common ground that people with different evidence can rationally believe different things, or that a person can believe different things when their evidence changes. But are these sufficient conditions for rational disagreement or change also necessary conditions. What’s called Interpersonal Permissiveness says that given some evidence, there may be more than one doxastic state that it is rational to be in.2 What’s called Intrapersonal Permissiveness says that given a person and some evidence, there may be more one doxastic state that it is rational to be in. A classic form of subjectivist Bayesianism says that a person can pick any prior they like, but they have to update it by conditionalisation. This is a version of a view that rejects Intrapersonal Permissiveness, since given one’s prior there is only one permissible posterior, but endorses Interpersonal Permissiveness, since there are multiple permissible priors.

The second dimension concerns whether the distinct views can be acknowledged as rational. Stewart Stewart Cohen (2013) defends the view that multiple attitudes can be rational, but one cannot rationally acknowledge a distinct view as rational. Following Kopec & Titelbaum (2016), call a view that says multiple views can both be rationally held and be believed to be rational Acknowledged Permissiveness, and the view that says multiple views could be rationally held, but could not be acknowledged, Unacknowledged Permissiveness.

Putting the last two paragraphs together gives us four varieties of Permissive theses. The negation of a Permissive thesis is a Uniqueness thesis. The name suggests that there is precisely one rational attitude to take in a specified situation, but we’ll interpret it as the view that there is at most one rational attitude to take so as to ensure each Uniqueness thesis is the negation of a Permissive thesis. So if there are four Permissive theses, there are four Uniqueness theses that negate them.

This appendix focuses on the strongest of these four Permissive theses, Acknowledged Intrapersonal Permissiveness, and its negation, Acknowledged Interpersonal Uniqueness. This is, I think, the most commonly discussed form of Permissiveness in the literature, and in any case is interesting. And I’m going to be arguing that in some cases involving symmetric games, coherence considerations provide a strong argument in favour of Acknowledged Intrapersonal Permissiveness.

The next two sections set out two symmetric games where Uniqueness3 leads to surprising results. In all cases I’ll assume that if Uniqueness is true, then the players know that it is true. And while this might be obvious, I’ll also note explicitly that they players have no evidence about the game or the players beyond what I write about the structure of the games.


F.1 Chicken

Some finite symmetric games don’t have a symmetric pure-strategy equilibrium. One notable example is Chicken, one version of which is in Table F.1.




Table F.1: Chicken





	
	Stay
	Swerve





	Stay
	-100,-100
	1, -1



	Swerve
	-1, 1
	0, 0










The symmetric pure-strategy pairs (Stay, Stay) and (Swerve, Swerve) are not equilibria; in each case both parties have an incentive to defect. But the game does have a symmetric mixed strategy equilibrium. It is that both players play the mixed strategy of Stay with probability 0.01, and Swerve with probability 0.99.

Now assume that Row and Column have the same relevant evidence, that they are self-aware and fully rational, and that these facts and no other are common knowledge between them, and that they are about to play Chicken one time. (It’s also common knowledge that they won’t play again; dropping this would raise the possibility of complicated strategic reasoning.)

Let Swerve be the proposition that a rational player with that evidence will Swerve. And call the players Row and Column. Given our assumptions so far, plus Uniqueness, we can prove that Row’s credence in Swerve is 0.99. Here’s the proof.


	Let x be Row’s credence in Swerve.

	By self-awareness, Row knows that x is her credence in Swerve.

	Since Row knows Row is rational, Row can infer that x is a rational credence in Swerve.

	Since Row knows Uniqueness is true, Row can infer that x is the only rational credence in Swerve.

	Since Row knows Column is rational, Row can infer that x is Column’s credence in Swerve, since (at step 4) Row has deduced that x is the only rational credence in Swerve.

	Since all the assumptions so far are common knowledge, Row can come to know that Column knows that x is Row’s credence in Swerve.

	If x = 1, then Row can come to know that it is rational for Column to Swerve, while knowing that Row will also Swerve. But this is impossible, since if Column knows Row will Swerve, it is best for Column to Stay. So x ≠ 1.

	If x = 0, then Row can come to know that it is rational for Column to Stay, while knowing that Row will also Stay. But this is impossible, since if Column knows Row will Stay, it is best for Column to Swerve. So x ≠ 0.

	So 0 < x < 1.

	Since Row knows Column’s credence that Row will Swerve (as was shown at step 6), and Row knows Column is rational, but Row does not know what Column will do, it must be that Column is indifferent between Stay and Swerve given her (i.e., Column’s) credences about what Row will do.4

	Column is indifferent between Stay and Swerve only if her credence that Row will Swerve is 0.99. (This is a reasonably simple bit of algebra to prove.)

	So from 10 and 11, Column’s credence that Row will Swerve is 0.99.

	By (known) Uniqueness, it follows that the only rational credence in Swerve is 0.99.

	So since Row is rational, it follows that x = 0.99.



Now there is nothing inconsistent in this reasoning. In a sense, it is purely textbook reasoning. But the conclusion is deeply puzzling. We’ve proven that Column is indifferent between her two options. And we’ve proven that Row knows this. But we’ve also proven that Row thinks it is 99 times more likely that Column will choose one of the options over the other. Why is that? It isn’t because there is more reason to do one than the other; given Column’s attitudes, the options are equally balanced. It is purely because Uniqueness pushes us to a symmetric equilibrium, and this is the only symmetric equilibrium. Given Uniqueness, the only coherent state is to have believe the other party is 99 times more likely to resolve a tie one way rather than another.

It’s important here that we’re imagining a one-shot version of Chicken. If the game is played repeatedly, then it is natural that the players will tend to the equilibrium of the game. What is surprising is that Uniqueness pushes us to thinking that, if the rationality of the players is common knowledge, the mixed strategy Nash equilibrium will be played in a one-shot game. As Matthias Risse (2000) argues, the argument that mixed strategy Nash equilibria are rational requirements of one-shot games is very weak. But it’s a conclusion the Uniqueness theorist is forced into.

It’s even more puzzling because of another feature of Uniqueness. It’s often very hard to see what the uniquely rational attitude could be in cases where the evidence is very sparse. The usual way to resolve this problem is to appeal to what Keynes (1921) dubbed the Principle of Indifference. That principle says, roughly, that if the evidence available for two options is equally good, treat them as equally likely. Here, Row thinks that Column is a utility maximiser who has two options of equal utility available to them. And Row concludes (and must conclude if Uniqueness is correct) that one of these options is 99 times more likely to be played. That’s not inconsistent with the letter of the Principle of Indifference. But it is inconsistent with the spirit of it.

All that said, I suspect many defenders of Uniqueness will be happy to accept these conclusions. The next case is I think poses a deeper problem for them.



F.2 Elections

The cases in this section come from some recent work on a rather old question,


If a symmetric game has an equilibrium, does it have a symmetric equilibrium?



Over the years, a positive answer was given to various restricted forms of that question. Most importantly, John Nash (1951) showed that if each player has finitely many moves available, then the game does have a symmetric equilibrium.

But recently it has been proven that the answer to the general question is no. Mark Fey (2012) describes an example of a positive-sum two-player game that has only asymmetric equilibria.5 Dimitrios Xefteris (2015) showed that there is a symmetric three-player zero-sum game that has only asymmetric equilibria. In fact, he showed that a very familiar game, a version of a Hotelling–Downs model of elections, has this property. Here’s how he describes the game.


Consider a unit mass of voters. Each voter is characterised by her ideal policy. We assume that the ideal policies of the voters are uniformly distributed in [0, 1]. We moreover assume that three candidates A, B and C compete for a single office. Each candidate J ∈\in {A, B, C} announces a policy sJ ∈\in [0, 1] and each voter votes for the candidate who announced the policy platform which is nearest to her ideal policy. If a voter is indifferent between two or among all three candidates she evenly splits her vote between/among them. A candidate J ∈\in {A, B, C} gets a payoff equal to one if she receives a vote-share strictly larger than the vote-share of each of the two other candidates. If two candidates tie in the first place each gets a payoff equal to one half. If all three candidates receive the same vote-shares then each gets a payoff equal to one third. In all other cases a candidate gets a payoff equal to zero. (Xefteris, 2015: 124)



It is clear that there is no symmetric pure-strategy equilibrium here. If all candidates announced the same policy, everyone would get a payoff of 13\frac{1}{3}. But no matter what that policy is, if B and C announce the same policy, then A has a winning move available. (If the number B and C say is not 0.5, A wins by saying 0.5. If they do both say 0.5, then A wins by saying 0.4.)

What’s more surprising, and what Xefteris proves, is that there is no symmetric mixed strategy equilibria either. Again, in such an equilibrium, any player would have a payoff of 13\frac{1}{3}. Very roughly, the proof that no such equilibrium exists is that random deviations from the equilibrium are as likely to lead to winning as losing, so they have a payoff of roughly 12\frac{1}{2}. So there is no incentive to stay in the equilibrium. So no symmetric equilibrium exists.

Using this game, I’m going to offer the following argument for Uniqueness.


	It’s possible that three people can play this (symmetric) game in a situation where it is commonly known that (a) each of them is rational, and (b) they have the same evidence. In the relevant sense of ‘rational’ a person is rational iff they have credences that are supported by their evidence, and they perform actions that maximise expected utility given their credences.

	If Uniqueness is true, then in a symmetric game where it is common knowledge that each person has the same evidence and is rational, every player will believe that the others have the same credences about what the others will do.

	If premise 2 is true, then if the players have the same evidence and are rational, the result of the game will be a symmetric equilibrium.

	The game does not have a symmetric equilibrium.

	So Uniqueness is false.



I’ll go over this abstract argument, then apply it to the Xefteris game.

Premise 1 is a claim that a particular game, that has an equilibrium, is possible to play. There is a strong assumption that mathematically coherent games are indeed possible to play, so this feels like a safe enough assumption. I’ll come back at the very end of the next section to whether it is safe.

Premise 2 is spelling out a consequence of Uniqueness, but it helps to go over why it is a consequence. Assume that player x has credence p that player y will play (pure) strategy s. In symbols, Crx(sy) = p, where Crx is x’s credence function, and sy is the proposition that y plays strategy s. By common knowledge of rationality, x thinks it is rational with their evidence to have credence p in sy. By Uniqueness, x thinks this is the only rational credence to have in sy. By common knowledge of sameness of evidence, x thinks that y is rational, and has the same evidence about x playing s as x has about y playing s. So y will do the only rational thing with that evidence, namely form credence p that x will play s. (In a game with more than two players, this also licences inferring that y believes that z will play s with probability p, and the same for all the other players.) Quite generally, x believes that y has the same credences about x as x themselves has about y.

Premise 3 says that this suffices for there to be a symmetric equilibrium of the game. In fact, we can say what that equilibrium would be: everyone plays the mixed strategy that corresponds to x’s credences about what y will play. By ’mixed strategy corresponding to these credences, I mean that if Crx(sy) = p, then each player y in fact plays strategy s with probability p, and so on for all strategies, and probabilities.

Why is that strategy set, where everyone does what x thinks y will do, an equilibrium? It starts with the fact that premise 2, and the reasoning behind it, is all a priori. So it’s knowable to a perfectly rational player, like x. So, if Uniqueness is true, x knows that whatever they think about the other players will (a) be true, and (b) be common knowledge. And since x takes the other players to be utility maximisers, that means that every strategy x gives them positive probability of playing must maximise expected utility given these (shared) credences about what everyone else will play. If there was some strategy that did not maximise expected utility, and x gave them positive probability of playing it, then x would think it was possible that the other player was not maximising expected utility, contradicting the assumption of common knowledge of rationality. That’s to say, playing the mixed strategy that corresponds to x’s beliefs about y must be an equilibrium, if Uniqueness is true, and it is common knowledge that the players have the same evidence and are rational.

Premise 4 says that something which is entailed by Uniqueness, combined with the assumptions in premise 1 and the other two premises, is not in fact true. So by modus tollens, Uniqueness is not true.

The arguments about the first three premises should apply to any symmetric game, with common knowledge of rationality and shared evidence. In any such game, the credences any player has about any other should be convertible into a (possibly mixed) equilibrium of the game. That’s because any player should be able to conclude that what they think about one player must be a rational belief (by the common knowledge of rationality), so must be the only rational belief given their own evidence (by Uniqueness), so must be the belief that everyone has (by shared evidence), so must in fact be correct (since it’s the only rational belief, and they are rational), and since it is a correct belief, and everyone is in fact a utility maximiser while holding these (correct) beliefs about everyone, must be an equilibrium. So every symmetric game must have a symmetric equilibrium, if Uniqueness is true, and the game is played under conditions of common knowledge of rationality and shared evidence.

That’s not true in this game. It does not in fact have a symmetric equilibrium. If we drop Uniqueness, it is easy enough to describe rational behaviour for players in this game. Here is one possible model for the game.


	A plays 0.6 (and wins), B and C each play 0.4 (and lose).

	Each player has a correct belief about what the other players will play.

	But both B and C know they cannot win given the other player’s moves, so they pick a move completely arbitrarily.

	Further, each player has a correct belief about why each player makes the move they make.



This is the coherent equilibria that Xefteris describes, but it requires some amount of luck, since it requires that B and C pick 0.4 when they could pick absolutely anything. Here’s a slightly more plausible model of the game.


	A plays 0.6 (and wins), B and C each play 0.4 (and lose).

	The only two rational plays are 0.4 and 0.6, and each of them is rationally permissible.

	In any world that a player believes to be actual, or a player believes another player believes to be actual, or a player believes another player believes another player believes to be actual, etc., the following two conditions hold.

	If a player plays 0.6, they believe the other two players will play 0.4, and hence playing 0.6 is a winning move.

	If a player plays 0.4, they believe the other two players will play 0.6, and hence playing 0.4 is a winning move.



The main difference between this model and Xefteris’s is that it allows that players have false beliefs. But why shouldn’t they have false beliefs? All they know is that the other players are rational, and rationality (we’re assuming) does not settle a unique verdict for what players will do. So I think this strategy set, where the players have rational (but false) beliefs about the other players, is more useful to think about.



F.3 Objections

The arguments for premises 2 and 3 in the argument above assumed something slightly stronger than Uniqueness. They each assumed that each player knew Uniqueness was true, and could use that in their reasoning. (Most importantly, in the argument for premise 3, it’s important that each player can reason through the reasoning behind premise 2, and that reasoning used Uniqueness.) What happens if we drop that assumption, and consider the possibility that Uniqueness is true but unknowable?

This possibility is a little uncomfortable for philosophical defenders of Uniqueness. If the players in these games do not know that Uniqueness is true, then neither do the authors writing about Uniqueness. And now we have to worry about whether it is permissible to assert in print that Uniqueness is true. I wouldn’t make too much of this though. It is unlikely that a knowledge norm governs assertion in philosophical journals.

The bigger worry here is that one key argument for Uniqueness seems to require that Uniqueness is knowable. A number of recent authors have argued that Uniqueness best explains our practice of deferring to rational people.6 For instance, Greco and Hedden use this principle in their argument for Uniqueness.


If agent S1 judges that S2’s belief that P is rational and that S1 does not have relevant evidence that S2 lacks, then S1 defers to S2’s belief that P. (Greco & Hedden, 2016: 373).



Similar kinds of arguments are made by Dogramaci (2012) and Horowitz (2014). But the principle looks rather dubious in the case of these games. Imagine that A forms a belief (we’ll come back to how) that B believes that a rational thing to do in the Xefteris game is to play 0.6, and so believes that B will play 0.6. This last step requires Uniqueness, or, more specifically, A’s belief that B believes in Uniqueness. The reasoning is as follows. A thinks that B thinks that 0.6 is a rational move; so, by Uniqueness, A believes that B believes that 0.6 is the only rational move; so, by B’s belief in their own rationality, B believes that they will play 0.6; so, by B’s self-control as a practically rational agent, B will in fact play 0.6. Now A believes that they have the same evidence as B, and that a rational thing to do with that evidence is play 0.6. By Uniqueness, they will believe that the only rational thing for someone with the evidence that they have (and that B has) is to play 0.6. But that can’t be right. If B is playing 0.6, as A has independently judged they will, the rational thing for A to do is to play something other than 0.6.

And that’s the general case for these symmetric games with only asymmetric equilibria. Believing that someone else is at an equilibrium point is a reason to not copy them. Uniqueness, combined with common knowledge of shared evidence and rationality, implies that anyone who believes that another player will adopt strategy s has a reason to adopt strategy s. After all, another player is playing it, and since that player is rational it is a rational thing to do in their situation, so by common evidence it is a rational thing to do in one’s own situation, so by Uniqueness it is the only rational thing to do in one’s own situation. But since the symmetric situations are not equilibria, believing that the other person will do s cannot be a reason to do s. That means one of the three assumptions we made here - common knowledge of rationality, common knowledge of shared evidence, and Uniqueness, must be wrong. Since it is typically taken to be at least coherent to have common knowledge of rationality and common knowledge of shared evidence, it follows that Uniqueness is wrong.

But maybe the Uniqueness theorist could resist that last step. Maybe they could deny that the game, with the assumption of common knowledge of rationality and shared evidence, really is possible. 7 This perhaps isn’t as surprising as it might seem.

Note two things about the Xefteris game. First, it is an infinite game in the sense that each player has infinitely many choices. It turns out this matters to the proof that there is no symmetric equilibrium to the game. Second, we are assuming it is common knowledge, and hence true, that the players are perfectly rational. Third, we are assuming that perfect rationality entails that people will not choose one option when there is a better option available. When you put those three things together, some things that do not look obviously inconsistent turn out to be impossible. Here’s one example of that.


A and B are playing a game. Each picks a real number in the open interval (0, 1). They each receive a payoff equal to the average of the two numbers picked.



For any number that either player picks, there is a better option available. It is always better to pick x+12\frac{x+1}{2} than x, for example. So it is impossible that each player knows the other is rational, and that rationality means never picking one option when a better option is available.

So the Uniqueness theorist could say that the same thing is going on in the Xefteris game. Some infinitely games cannot be played by rational actors (understood as people who never choose sub-optimal options); this is one of them. But if this is all the Uniqueness theorist says, it is not a well motivated response. We can say why it is impossible to rationally play games like the open interval game; the options get better without end. But that isn’t true in the Xefteris game. The only thing that makes the game seem impossible is the Uniqueness assumption. People who reject Uniqueness can easily describe how the Xefteris game can be played by rational players. Simply saying that it is impossible, without any motivation or explanation for this other than Uniqueness itself, feels like an implausible move.



F.4 Conclusion

If Uniqueness is true, then the following thing happens in games between people who know each other to have the same evidence, and to be rational. When someone forms a belief about what the other person will do, they can infer that this is a rational way to play the game given knowledge that everyone else will do the same thing. But sometimes this is a very unintuitive inference. In Chicken, it implies that we should have asymmetric attitudes to someone who is facing a choice between two options with equal expected value. In the election game Xefteris describes, a game that feels consistent turns out to be impossible.

I think the conclusion to draw from these cases of symmetric interactions this is that Uniqueness is false, and hence Permissivism is true. Sometimes in such an interaction one simply has to form a belief about the other player, knowing they may well form a different belief about you. Indeed, sometimes only coherent way to form a belief about the other player is to believe that they will form a different belief about you. And that means giving up on Uniqueness.







1. For a much more thorough introduction to the debate, and especially into the varieties of Permissivist theses, see Kopec & Titelbaum (2016) and Meacham (2019). The next three paragraphs draw heavily from these two papers. For more recent arguments in favour of Permissivism, see Callahan (2021), Lota & Hlobil (2023), Palmira (2023), and Ye (2023). For criticisms, see Schultheis (2018) and Ross (2021).



2. In setting up the debate, I’m following the standard practice and assuming some kind of evidentialism. If one thinks that other things than evidence matter to rational credence, such as thinking that testimony provides non-evidential reasons for belief, it is a little complicated but possible to restate everything here to fit such an epistemological view. The general picture is that ‘evidence’ here really means non-pragmatic reasons for belief. But it’s simpler to say ‘evidence’, and that’s what I’ll generally say.



3. From now on, when I say ‘Uniqueness’ I mean Acknowledged Intrapersonal Uniqueness. It’s easier to simply stipulate this now than repeating the phrase every time.



4. If Column was not indifferent between their options, the knowledge Row has by step 6 would be sufficient to deduce with certainty what Column will do. But at step 9 we showed that Row does not know what Column will do.



5. In Fey’s game both players pick a real in [0, 1]. If both players pick numbers in (0, 1), the one who picks the larger number wins. But there are a lot of complications if one or both pick an extreme value, including the game not always being zero-sum. I’m not relying on it here because it is a little too close to the game I’ll discuss at the end of this section where everyone agrees there is no way to play it given common knowledge of rationality. Fey’s paper also includes a nice chronology of some of the proofs of positive answers to restricted forms of the question.



6. There is a nice discussion of this argument, including citations of the papers I’m about to discuss, in Kopec & Titelbaum (2016: 195).



7. This move won’t really help with Chicken; but maybe in that case they can simply insist that a rational player will rationally think the other player is more likely to make one of the two choices with equal expected payoffs.
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